Skip to main content
Log in

Flood occurrence hazard forecasting based on geographical information system

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The application of Geographical Information system (GIS) in modeling flood and its prediction in catchments offers considerable potential. Several examples illustrate simple GIS techniques to produce flood hazard indices or its zonation using hydrologic-type models. Existing flood models can also be loosely coupled to a GIS, such as the HMS (Hydrological Modeling System) model. Forethermore, models can be fully integrated into a GIS by embedded coupling, such as the SCS (Soil Conservation Service) model. Installation of flood forecasting systems in watersheds with incomplete hydrometric data may reduce the flood-induced damages. In this study Geographical Information system used to up to date the watershed data and estimation of SCS model parameters which is sensible to considered the real time flood forecasting in Kasilian catchment of Mazandaran province. The main aim of this paper is to investigate the possibility of the linkage between GIS with a comprehensive hydrologic model, especially HMS. The use of GIS could produce a suitable agreement between observed results (extracted rainfall and runoff data of 1992, 1995 and 1996 from the related stations) with the calculated results of the hydrological model. The obtained results from rainfall-runoff process simulations of the model in this research showed that submergibility of the main watershed, Kasillian, does not depend on the outlet discharge rate of each one of its watershed independently. But it is related to how those two outlet hydrographs from main river watershed are combined. The model is capable of showing the flood characteristics temporally and spatially in each cross section of the channel network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammentorp H.C., Havno K. and Refsgaard J.C., (1992). Real time flood forecasting. Int. Symp. On Dams and extreme floods, Granada, Spain, 103–111.

  • Cabal A. and Erlich M., (1992). Design development and implementation of hydrological data base management system for the purpose of real-time flood forecasting. 4th Int. Conf. on Hydraulic Eng. Software Hydrosoft/92. Billerica, USA, 395–406.

  • Chow V. T., Maidment D. R. and Mays L. W., (1988). Applied Hydrology. Mc.Graw-Hill Education, New York, 572.

    Google Scholar 

  • Hellweger F. and Maidment D. R., (1999). Definition and Connection of Hydrologic Elements Using Geographic Data, Journal of Hydrologic Engineering. 4, 10–18.

    Article  Google Scholar 

  • Kupcho K., (1997). Obtaining SCS Synthetic Unit Hydrograph By GIS Techniques, 12 http://gis.esri.com.

  • Mohammadi H., (2001). Hydrological analysis of flood forecastin: Kasilaian watershed. MSc thesis, University of Mazandaran, 152.

  • Olivera F. and Maidment D., (1999) Developing a Hydrologic Model of the Guadalupe Basin / Center for Research in Water Resources, Austin, Texas.

  • Olivera F. S. and Maidment D., (1998) HEC-Prepro v.2: An Arcview pre-processo for Hec,s Hydrological Modeling System. Centre for research in water resources Austin, Texas.

  • Smith P., (1995). Hydrologic Data Development System, Master Thesis, Department of Civil Engineering, University of Texas at Austin, 60.

  • Williams P. B., (1994). Flood control Vs. flood management. Civil Eng., 51–54.

  • Xiaoliu Y. and Michel C., (2000). Flood forecasting with a watershed model: a new model of paprametre updating. Hydrological Sciences Journal, 4, 537–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Solaimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solaimani, K., Mohammadi, H., Ahmadi, M.Z. et al. Flood occurrence hazard forecasting based on geographical information system. Int. J. Environ. Sci. Technol. 2, 253–258 (2005). https://doi.org/10.1007/BF03325884

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03325884

Keywords

Navigation