Acta Geodaetica et Geophysica Hungarica

, Volume 35, Issue 1, pp 37–48 | Cite as

Thermoviscoelastic Models of The Deformations And Gravity Changes Due to Anomalous Source of Heat

  • L. Brimich
Sixth Winter Seminar Sopron (WSS ’98), Part II


The paper presents basic formulae for the stress and strain components of the deformation and gravity changes due to source of heat of prismatic shape embedded in the elastic and viscoelastic halfspace (lithosphere) of the Kelvin type. Numerical results are presented in the numerous graphs which show gradual approaching stress, strain and gravity changes to the steady state. It is shown that the surface displacement causes a pronounced dome in the epicentral region of the source of heat and that the surface thermoviscoelastic stresses are mainly of tensile type and their values are well comparable with critical stresses required to cause creep or fractures of the surface of the halfspace.


deformation gravity change heat source thermoelastic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bianchi R, Coradini A, Federico C, Gibberti G, Lancian P, Pozzi J P, Sartoris G, Scan- done R 1987: Jour. Geoph. Res., 92, 14139–14150.CrossRefGoogle Scholar
  2. Carslaw H S, Jaeger J C 1959: Conduction of heat in solids. Oxford, Clarendon PressGoogle Scholar
  3. Davis P M 1986: Jour. Geoph. Res., 91, 7429–7438.CrossRefGoogle Scholar
  4. Dietrich J H, Decker R N 1995: Jour. Geoph. Res., 80, 4094–4107.CrossRefGoogle Scholar
  5. Fernández J 1992: Técnicas geodésicas y geodinámicas aplicadas a la investigación del riesgo volcánico en la isla de Lauzarote. Doctoral disertation, Universidad Complutense de MadridGoogle Scholar
  6. Fernández J, Rundle J B 1994: J. Geophys. Res., 99, 2737–2746.CrossRefGoogle Scholar
  7. Fernández J, Ting-To Y, Rundle J B 1996: J. Geophys. Res., 101, 13581–13594.CrossRefGoogle Scholar
  8. Hofton M A, Rundle J B, Foulger G R 1995: J. Geophys. Res., 100, 6329–6338.CrossRefGoogle Scholar
  9. Hvozdara M 1992: Contr. Geoph. Inst. SAS, 22, 48–66.Google Scholar
  10. Hvozdara M 1998: Density and gravity changes due to point heat source buried in the viscoelastic halfspace. Contr. Geoph. Geod., 28, 123–137.Google Scholar
  11. Hvozdara M, Brimich L 1991: Contr. Geophys. Inst. Slov. Acad. Sci., 21, 59–78.Google Scholar
  12. Hvozdara M, Brimich L 1995: Cahier du Centre Européan de Géodynamique et de Séismologie, 8, 337–348.Google Scholar
  13. Hvozdara M, Rosa K 1980: Studia geophys. geod., 24, 51–60.CrossRefGoogle Scholar
  14. Nowacki W 1962: Thermoelasticity. Oxford, Pergamon PressGoogle Scholar
  15. Okube S, Watanabe H 1989: Geoph. Res. Lett, 16, 445–448.CrossRefGoogle Scholar
  16. Rundle J B 1980: J. Geophys. Res., 85, 5355–5363.CrossRefGoogle Scholar
  17. Rundle J B 1982: J. Geophys. Res., 87, 10729–10744.CrossRefGoogle Scholar
  18. Rundle J B 1983: J. Geophys. Res., 88, 10647–10652.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2000

Authors and Affiliations

  • L. Brimich
    • 1
  1. 1.Geophysical Institute Slovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations