Aging Clinical and Experimental Research

, Volume 5, Issue 4, pp 277–289 | Cite as

Theories of aging

  • Caleb E. Finch


This review of gerontological theory cites diverse examples of neural and endocrine involvement in the senescence of mammals and some other multicellular species that suggest fundamental involvement in age-related changes in cell functions. The data support the major hypothesis that age-related changes are generally caused by specific physiological factors that are extrinsic to cells. The success of these manipulations includes retarding or reversing specific age-related changes, and extending the life span. From another perspective, these findings have converted time in the analysis of senescence from an independent variable to a dependent variable. So far, we do not need to hypothesize any new mechanism that is not already known in disease or normal functioning. (Aging Clin. Exp. Res. 5: 277–289, 1993)

Key Words

Cell aging gene expression life span neuroendocrine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finch C.E.: Longevity, Senescence, and the Genome. University of Chicago Press, Chicago, 1990.Google Scholar
  2. 2.
    Hamilton W.D.: The moulding of senescence by natural selection. J. Theoret. Biol. 12: 12–45, 1966.CrossRefGoogle Scholar
  3. 3.
    Charlesworth B.: Evolution in Age-Structured Populations. Cambridge Univ. Press, Cambridge, 1980.Google Scholar
  4. 4.
    Rose M.R.: The Evolutionary Biology of Aging. Oxford Univ. Press, Oxford, 1991.Google Scholar
  5. 5.
    Williams G.C.: Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411, 1957.CrossRefGoogle Scholar
  6. 6.
    Harvey P.H., Zammuto R.M.: Patterns of mortality and age at first reproduction in natural populations of mammals. Nature 315: 319–320, 1985.PubMedCrossRefGoogle Scholar
  7. 7.
    Williams G.C.: Natural selection, the costs of reproduction, and a refinements of Lack’s principle. Am. Nat. 100: 687–690, 1966.CrossRefGoogle Scholar
  8. 8.
    Arking R., Dudas S.P.: Review of genetic investigations into the aging processes of Drosophila. J. Am. Geriatr. Soc. 37: 757–773, 1989.PubMedGoogle Scholar
  9. 9.
    Clare M.J., Luckinbill L.S.: The effects of gene-environment interaction on the expression of longevity. Heredity 55: 19–29, 1989.CrossRefGoogle Scholar
  10. 10.
    Phelan J.P., Austad S.N.: Natural selection, dietary restriction, and extended longevity. Growth Dev. Aging 53: 4, 1989.PubMedGoogle Scholar
  11. 11.
    Nesse R.M.: Life table tests of evolutionary theories of senescence. Exp. Gerontol. 23: 445–453, 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Leaman B.M., Beamish R.J.: Ecological and management implications of longevity in some northease Pacific groundfishes. Bull Int. N. Pac. Fish. Comm. 42: 85–97, 1984.Google Scholar
  13. 13.
    Haldane J.B.S.: New Paths in Genetics. Allen and Unwin, London, 1941.Google Scholar
  14. 14.
    Medawar P.B.: An Unsolved Problem of Biology. H.K. Lewis, London, 1952.Google Scholar
  15. 15.
    Templeton A. R., Hollocher H., Lawler S., Johnston J.S.: The ecological genetics of abnormal abdomen in Drosophila melanogaster. In: Barker J.S.F., Starmer W.T. (Eds.), Ecological and Evolutionary Genetics of Drosophila. Academic Press, New York, 1990.Google Scholar
  16. 16.
    Lerner S.P., Finch C.E.: The major histocompatibility complex and reproductive function. Endocr. Rev. 12: 78–90, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Masters P.M., Bada J.L., Zigler J.S. Jr.: Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature 268: 71–73, 1977.PubMedCrossRefGoogle Scholar
  18. 18.
    Roher A.E., Lowenson J.D., Clarke S., Wolkoe C., Wang R., Cotter R.J., Reardon I.M., Zurcher-Neely H.A., Heinrikson R.L., Ball M.J., Greenberg B.D.: Structural alterations in the peptide backbone of b-amyloid care protein may account for its deposition and stability in Alzheimer’s disease. J. Biol Chem. 268: 3072–3083, 1993.PubMedGoogle Scholar
  19. 19.
    Delong R., Poplin L.: On the etiology of aging. J. Theoret. Biol. 67: 111–120, 1977.CrossRefGoogle Scholar
  20. 20.
    Masters P.M.: Stereochemically altered non-collagenous protein from human dentin. Calcif. Tissue Int. 35: 43–47, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Stadtman, E.R.: Protein oxidation and aging. Science 257: 1220–1224, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Robinson A.B., Rudd C.J.: Deamidation of glutaminyl and asparginyl residues in peptides and proteins. Curr. Top. Cell. Reg. 8: 247–295, 1974.Google Scholar
  23. 23.
    Robinson A.B., Rudd C.J.: Deamidation of glutaminyl and asparginyl residues in peptides and proteins. Curr. Top. Cell. Reg. 8: 247–295, 1974.Google Scholar
  24. 24.
    Randerath K., Reddy M.V., Disher R.M.: Age- and tissue-related modifications in untreated rats: Detection by 32P-postlabeling assay and possible significance for spontaneous tumor induction and aging. Carcinogenesis 7: 1615–1617, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Randerath K., Putnam K.L., Osterburg H.H., Johnson S.A., Morgan D.G., Finch C.E.: Age-dependent increases of DNA adducts (I-compounds) in human and rat brain DNA. Mutat. Res. 295: 11–18, 1992.Google Scholar
  26. 26.
    Everson R.B., Randerath E., Santella R.M., Cefalo R.C., Avitts T.A., Randerath K.: Detection of smoking-related covalent DNA adducts in human placenta. Science 231: 54–57, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Phillips P.D., Cristofalo V.J.: A review of recent cellular aging research: the regulation of cell proliferation. Rev. Biol. Res. Aging 2: 339–360, 1985.Google Scholar
  28. 28.
    Aschheim P.: Resultats fournis par la greffe hétérochrone des ovaries dans l’étude de la régulation hypothalamus-hypophyso-ovarienne de la ratte sénile. Gerontologia 10: 65–75, 1965.CrossRefGoogle Scholar
  29. 29.
    Finch C.E., Felicio L.S., Mobbs C.V., Nelson J.F.: Ovarian and steroidal influences on neuroendocrine aging process in female rodents. Endocr. Rev. 5: 467–497, 1984.PubMedCrossRefGoogle Scholar
  30. 30.
    Miller R.: Aging and the immune response. In: Schneider E.L., Rowe J.W. (Eds.), Handbook of the Biology of Aging. Academic Press, San Diego, 1990, pp. 157–180.CrossRefGoogle Scholar
  31. 31.
    Harrison D.E., Astle C.M., Stone M.: Numbers and functions of transplantable primitive immunohematopoietic stem cells. J. Immunol. 142: 3833–3840, 1989.PubMedGoogle Scholar
  32. 32.
    Roy S., Sala R., Cagliero E., Lorenzi M.: Overexpression of fibronectin induced by diabetes or high glucose: phenomena with a memory. Med. Sci. 87: 404–408, 1990.Google Scholar
  33. 33.
    Wilks A.F., Cozens P.J., Mattaj J.W., Jost J-P.: Estrogen induces a demethylation at the 5′ end region of the chicken vitellogenin gene. Proc. Natl. Acad. Sci. USA 79: 4252–4255, 1982.PubMedCrossRefGoogle Scholar
  34. 34.
    Haché R.J.G., Tarn S-P., Cochrane A., Nesheim M., Deeley R.G.: Long-term effects of estrogen on avian liver: Estrogen-inducible switch in expression of nuclear, hormone-binding proteins. Mol. Cell. Biol. 7: 3538–3547, 1987.PubMedGoogle Scholar
  35. 35.
    Barton M.C., Shapiro D.J.: Transient administration of estradiol-17β establishes an autoregulatory loop permanently inducing estrogen receptor mRNA. Proc. Natl. Acad. Sci. USA 85: 7119–7123, 1988.PubMedCrossRefGoogle Scholar
  36. 36.
    Mobbs C.V.: Neurotoxic effects of estrogen, glucose, and glucocorticoids: neurohormonal hysteresis and its pathological consequences during aging. Rev. Biol Res. Aging 4: 201–230, 1990.Google Scholar
  37. 37.
    Jones E.C., Krohn P.L.: The effect of hypophysectomy on age changes in the ovaries of mice. J. Endocrinol. 20: 497–508, 1961.CrossRefGoogle Scholar
  38. 38.
    Nelson J.F., Gosden R.G., Felicio L.S.: Effect of dietary restriction on estrous cyclicity and follicular reserves in aging C57BL/6J mice. Biol. Reprod. 32: 515–522, 1985.PubMedCrossRefGoogle Scholar
  39. 39.
    Finch C.E., Pike M.C., Witten M.: Slow increases of the Gompertz mortality rate during aging in certain animals approximate that of humans. Science 249: 902–905, 1990.PubMedCrossRefGoogle Scholar
  40. 40.
    Choat J.R., Black R.: Life histories of limpets and the limpet-laminarian relationship. J. Exp. Mar. Biol Ecol. 41: 25–50, 1979.CrossRefGoogle Scholar
  41. 41.
    Ogden J.: Forest dynamics and stand-level dieback in New Zealand’s Nothofagus forests. Geojournal 17: 225–230, 1988.CrossRefGoogle Scholar
  42. 42.
    Wardle JA: The New Zealand Beeches. Ecology, Utilization, and Management. New Zealand Forest Service, Christchurch, 1984.Google Scholar
  43. 43.
    Weissman A.: Life and Death (a paper presented in 1883). In: Poulton E.B., Schonland S., Shipley E. (Eds.), Essays upon Heredity and Kindred Biological Problems. Clarendon, Oxford, 1889.Google Scholar
  44. 44.
    Sabbadin A.: Colonial structure and genetic patterns in ascidins. In: Larwood G., Rosen B.R. (Eds.), Biology and Systematics of Colonial Organisms. Academic Press, New York, 1979, pp. 433–444.Google Scholar
  45. 45.
    Wilson E.B.: The Cell in Development and Heredity, ed. 3. McMillan, New York, 1925.Google Scholar
  46. 46.
    Brody H.: Organization of cerebral cortex. 3. A study of aging in the human cerebral cortex. J. Comp. Neurol. 102: 511–556, 1955.PubMedCrossRefGoogle Scholar
  47. 47.
    Colman P.C., Kaplan B.B., Osterburg H.H., Finch C.E.: Brain poly(A)RNA during aging: Stability of yield and sequence complexity in two rat strains. J. Neurochem. 34: 335–345, 1980.PubMedCrossRefGoogle Scholar
  48. 48.
    Martin G.M.: Syndromes of accelerated aging. Natl. Canc. Monograph 60: 241–247, 1978.Google Scholar

Copyright information

© Editrice Kurtis s.r.l. 1993

Authors and Affiliations

  • Caleb E. Finch
    • 1
  1. 1.Andrus Gerontology Center and Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations