Advertisement

Aging Clinical and Experimental Research

, Volume 3, Issue 1, pp 19–23 | Cite as

Transmural differences of lipofuscin pigment accumulation in the left ventricle of rat heart during growth and aging1

  • A. Del Roso
  • V. De Tata
  • Z. Gori
  • Ettore Bergamini
Original Article

Abstract

In view of the higher metabolic rate in subendocardial heart tissue, the rate of age-related lipofuscin pigment accumulation was explored in different regions of the left ventricle heart wall of Sprague-Dawley rats. Hearts were removed from 2-, 6-, 12- and 24-month-old rats, and lipofuscin pigment accumulation was assessed in the subepicardial and subendocardial layers, either by measuring extractable fluorescent material, or by direct visualization with fluorescence microscopy. Findings showed that the amount of extractable fluorescent material and the number, size and brightness of the fluorescent lipofuscin granules increased with age in all the myocardial tissue layers. The rate of accumulation of extractable fluorescent material was higher in subendocardial compared to subepicardial tissue. At the microscope, fluorescent granules exhibited a different morphological appearance in the subendocardial and subepicardial tissue of the two older age-groups. These data support the hypothesis that liposoluble age-pigment deposition is linked to the rate of local oxidative metabolism. (Aging 3: 19-23, 1991)

Keywords

Aging heart lipofuscin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sohal R.S., Wolfe L.S.: Lipofuscin: characteristics and significance. Progr. Brain Res. 70: 171–183, 1986.CrossRefGoogle Scholar
  2. 2.
    Tomanek R.J., Karlsson U.L.: Myocardial ultrastructure of young and senescent rats. J. Ultrastruct Res. 42: 201–220, 1973.PubMedCrossRefGoogle Scholar
  3. 3.
    Csallany A.S., Ayaz K.L.: Quantitative determination of organic solvent soluble lipofuscin pigments in tissues. Lipids 11: 412–417, 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Travis D.F., Travis A.: Ultrastructural changes in the left ventricular rat myocardial cell with age. J. Ultrastruct. Res. 39: 124–148, 1972.PubMedCrossRefGoogle Scholar
  5. 5.
    Feldman M.L., Navaratnam V.: Ultrastructural changes in atrial myocardium of the aging rat. J. Anat 133: 7–17, 1981.PubMedGoogle Scholar
  6. 6.
    Malkoff D.B., Strehler B.L.: The ultrastructure of isolated and in situ human cardiac age-pigment. J. Cell Bol. 16:611–616, 1963.CrossRefGoogle Scholar
  7. 7.
    Skepper J.N.,. Navaratnam V.: Lipofuscin formation in the myocardium of juvenile golden hamster: an ultrastructural study including staining for acid phosphatase. J. Anat. 150: 155–167, 1987.PubMedGoogle Scholar
  8. 8.
    Shimasaki H., Nozawa T., Privett O.S., Anderson W.R.: Detection of age-related fluorescent substances in rat tissues. Arch. Biochem. Biophys. 183: 443–451, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Friede R.L.: The relation of the formation of lipofuscin to the distribution of oxidative enzymes in the human brain. Acta Neuropathol 2: 113–125, 1962.CrossRefGoogle Scholar
  10. 10.
    Tappel A.L.: Lipid peroxidation damage to cell components. Fed. Proc. 32: 1870–1874, 1973.PubMedGoogle Scholar
  11. 11.
    Hansford R.G.: Bioenergetics in aging. Biochim. Biophys. Acta 726: 41–80, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Sohal R.S., Marzabadi M.R., Galaris D., Brunk U.T.: Effect of ambient oxygen concentration on lipofuscin accumulation in cultured rat heart myocytes. A novel in vitro model of lipofuscinogenesis. Free Radic. Biol. Med. 6: 23–30, 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Marzabadi M.R., Sohal R.S., Brunk U.T.: Effect of ferric iron and desferrioxamine on lipofuscin accumulation in cultured rat heart myocytes. Mech. Ageing Dev. 46: 145–157, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Tappel A.L.: Lipid peroxidation and fluorescent molecular damage to membranes. In: Trump B.F., Arstila A.V. (Eds.), Pathobiology of cell membranes. Academic Press, New York, 1975, pp. 145–170.Google Scholar
  15. 15.
    Miquel J., Oro J., Bensch I., Johnson J.: Lipofuscin: fine structural and biochemical studies. In: Pryor W.A. (Ed.), Free Radicals in Biology. Academic Press, New York, 1977, pp. 133–182.Google Scholar
  16. 16.
    Gutteridge J.M.C.: Damage to biological molecules by iron and copper complexes. In: Zs-Nagy I. (Ed.), Lipofuscin-1987; State of the art. Akademiai Kiado, Budapest and Elsevier, Amsterdam, 1988, pp. 69–82.Google Scholar
  17. 17.
    Thaw H.H., Brunk U.T., Collins P.V.: Influence of oxygen tension, pro-oxidants and antioxidants on the formation of lipid peroxidation products (lipofuscin) in individual cultivated human glial cells. Mech. Ageing Dev. 24: 211–223, 1984.PubMedCrossRefGoogle Scholar
  18. 18.
    Nohl H., Hegner D.: Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82: 563–567, 1978.PubMedCrossRefGoogle Scholar
  19. 19.
    Armour J.A., Randall W.C.: Canine left intramyocardial pressures. Am. J. Physiol 220: 1833–1839, 1971.PubMedGoogle Scholar
  20. 20.
    Stein P.D., Marzilli M, Sabbah H.N., Lee T.: Systolic and diastolic pressure gradients within the left ventricular wall. Am. J. Physiol 238: H625–H630,1980.PubMedGoogle Scholar
  21. 21.
    Kirk E.S., Honig C.R.: Non uniform distribution of blood flow and gradients of oxygen tension within the heart. Am. J. Physiol. 207: 661–668, 1964.PubMedGoogle Scholar
  22. 22.
    Schultheiss H.P., Bispink G., Neuholff V., Boite H.D.: Myocardial lactate dehydrogenase isoenzyme distribution in the normal heart. Basic Res. Cardiol. 76: 681–689, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    De Tata V., Bergamini C., Gori Z., Locci-Cubeddu T., Bergamini E.: Transmural gradient of glycogen metabolism in the normal rat left ventricle. Pflugers Arch. 396: 60–65, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Katz M.L., Robinson W.G., Herrmann R.K., Groome A.B., Bieri J.G.: Lipofuscin accumulation resulting from senescence and vitamin E deficiency: spectral properties and tissue distribution. Mech. Ageing Dev. 25: 149–159, 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Weibel E.R.: Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol 26: 235–302, 1969.PubMedCrossRefGoogle Scholar
  26. 26.
    Van der Vusse G.J., Arts T., Glatz J.F.C., Reneman R.S: Transmural differences in energy metabolism of the left ventricular myocardium: fact or fiction. J. Mol. Cell. Cardiol 22: 23–37, 1990.PubMedGoogle Scholar
  27. 27.
    Lyman C.P., O’Brien R.C., Green G.C.: Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212: 668–670, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Papafrangas E.D., Lyman C.P.: Lipofuscin accumulation and hibernation in the Turkish hamster Mesocricetus brandti J. Gerontol. 37: 417–421, 1982.CrossRefGoogle Scholar
  29. 29.
    Sohal R.S.: Relationship between metabolic rate, lipofuscin accumulation and lysosomal enzyme activity during aging in the adult housefly, Musca domestica. Exp. Gerontol 16: 347–355, 1981.PubMedCrossRefGoogle Scholar
  30. 30.
    Sohal R.S., Donato H.: Effects of experimentally altered life spans on the accumulation of fluorescent age-pigment in the housefly, Musca domestica. Exp. Gerontol 13: 335–341, 1978.PubMedCrossRefGoogle Scholar
  31. 31.
    Munnel J., Getty R.: Rate of accumulation of cardiac lipofuscin in the aging canine. J. Gerontol. 23: 154–158, 1968.CrossRefGoogle Scholar
  32. 32.
    Scholtz C.L., Brown A.: Lipofuscin and transsynaptic degeneration. Virchows Arch. 381: 35–40, 1978.Google Scholar
  33. 33.
    Brizze K.R., Ordy J.M., Kaack B.: Early appearance of regional and extraneuronal lipofuscin accumulation with age in the brain of non human primate (Macaca mulatta). J. Gerontol. 29: 366–381, 1974.CrossRefGoogle Scholar
  34. 34.
    Nandy K.: Properties of neuronal lipofuscin pigment in mice. Acta Neuropathol (Berlin) 19: 25–32, 1971.CrossRefGoogle Scholar
  35. 35.
    Fletcher B.L., Dillard J.C., Tappel A.L: Measurements of fluorescent lipid peroxidation products in biological system and tissues. Anal. Biochem. 52: 1–9, 1973.PubMedCrossRefGoogle Scholar
  36. 36.
    Hendley D.D., Mildvan A.S., Reporter M.C., Strehler B.L.: The properties of isolated human age-pigments. I. Preparation and physical properties. J. Gerontol. 18: 144–149, 1963.PubMedCrossRefGoogle Scholar
  37. 37.
    Shimasaki H., Ueta N., Privett O.S.: Covalent binding of peroxidised linoleic acid to proteins and amino acids as a model for lipofuscin formation. Lipids 17: 878–883, 1982.CrossRefGoogle Scholar

Copyright information

© Editrice Kurtis s.r.l. 1991

Authors and Affiliations

  • A. Del Roso
    • 1
  • V. De Tata
    • 1
  • Z. Gori
    • 1
  • Ettore Bergamini
    • 1
  1. 1.Centro Interdipartimentale di Ricerca sull’Invecchiamento, Institute of General PathologyUniversity of PisaPisaItaly

Personalised recommendations