Mago nashi Interacts with a Taiwania (Taiwania cryptomerioides) Pectin Methylesterase-like Protein

  • Y. R. Chen
  • F. H. Chu
Review Article


Mago nashi proteins are highly conserved among eukaryotes. They are involved in oogenesis, embryogenesis and germ-line determination during animal development, and play important roles in pollen tube growth, root development and spermatogenesis during plant development. In this study, we used yeast two-hybrid screening to show that the TcMago protein can interact with a Taiwania (Taiwania cryptomerioides) pectin methylesterase-like protein (TcPME1) which consists of a transmembrane domain, a pectin methylesterase inhibitor (PMEI) domain and a pectin methylesterase (PME) domain. The PME domain of TcPME1 was necessary for binding with the TcMago protein. The PME domain was highly conserved in all the plants assayed and had five well conserved active site residues. The predicted protein tertiary structures revealed that the PMEI domain and PME domain of TcPME1 are similar to kiwi (Actinidia deliciosa) PMEI and carrot (Daucus carota) PME, respectively. TcPME1 was expressed abundantly in the early stage of root elongation and accumulated at root tip. Moreover, TcPME1 expression was inhibited by the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Thus, TcPME1 might be involved in root elongation, shoot development and auxin transport during Taiwania development.

Key words

pectin methylesterase root elongation Taiwania cryptomerioides TcMago TcPME1 yeast two-hybrid 



pectin methyl estrase


N-1-naphthylphthalamic acid


exon-exon junction complex


basic local alignment search tool


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boswell RE, Prout ME & Steichen JC, Development, 113 (1991) 373.PubMedGoogle Scholar
  2. 2.
    Micklem DR, Dasgupta R, Elliott H, Gergely F, Davidson C, Brand A, González-Reyes A & St Johnston S, Curr Biol, 7 (1997) 468.PubMedCrossRefGoogle Scholar
  3. 3.
    Newmark PA, Mohr SE, Gong L & Boswell RE, Development, 124 (1997) 3197.PubMedGoogle Scholar
  4. 4.
    Newmark PA & Boswell RE, Development, 120 (1994) 1303.PubMedGoogle Scholar
  5. 5.
    Zhao XF, Nowak NJ, Shows TB & Aplan PD, Genomics, 63 (2000) 145.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen YR, Shaw JF, Chung MC & Chu FH, Tree Physiol, 27 (2007) 1261.PubMedCrossRefGoogle Scholar
  7. 7.
    Le Hir H, Izaurralde E, Maquat LE & Moore MJ, EMBO J, 19 (2000) 6860.CrossRefGoogle Scholar
  8. 8.
    Johnson MA, von Besser K, Zhou O, Smith E, Aux G, Patton D, Levin JZ & Preuss D, Genetics, 166 (2004) 971.CrossRefGoogle Scholar
  9. 9.
    van der Weele CM, Tsai CW & Wolniak SM, Mol Biol Cell, 18 (2007) 3711.PubMedCrossRefGoogle Scholar
  10. 10.
    He C, Sommer H, Grosardt B, Huijser P & Seedier H, Mol Biol Evol, 24 (2007) 1229.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen YR & Chu FH, Tree Physiol, 26 (2008a) 1211.CrossRefGoogle Scholar
  12. 12.
    Markoviè O & Janeèek Š, Carbohydr Res, 339 (2004) 2281.CrossRefGoogle Scholar
  13. 13.
    Pelloux J, Rustérucci C & Mellerowicz EJ, Trends Plant Sci, 12 (2007) 267.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldberg R, Pierron M, Bordenave M, Breton C, Morvan C & Penhoat CH, J Biol Chem, 276 (2001) 8841.PubMedCrossRefGoogle Scholar
  15. 15.
    Michell F, Trends Plant Sci, 6 (2001) 414.CrossRefGoogle Scholar
  16. 16.
    Michell F, Sundberg B, Goldberg R & Richard L, Plant Physiol, 124 (2000) 191.CrossRefGoogle Scholar
  17. 17.
    Gaffe J, Tiznado ME & Handa AK, Plant Physiol, 41 (1997) 1547.CrossRefGoogle Scholar
  18. 18.
    Brummell DA & Harpster MH, Plant Mol Biol, 47 (2001) 311.PubMedCrossRefGoogle Scholar
  19. 19.
    Frenkel C, Peters JS, Tiernan DM, Tiznado ME & Handa AK, J Biol Chem, 273 (1998) 4293.PubMedCrossRefGoogle Scholar
  20. 20.
    Wen F, Zhu Y & Hawes MC, Plant Cell, 11 (1999) 1129.PubMedGoogle Scholar
  21. 21.
    Saher S, Piqueras A, Hellin E & Olmos E, Plant Physiol Biochem, 43 (2005) 155.PubMedCrossRefGoogle Scholar
  22. 22.
    Francis KE, Lam SY & Copenhaver GP, Plant Physiol, 142 (2006) 1004.PubMedCrossRefGoogle Scholar
  23. 23.
    Tian GW, Chen MH, Zaltsman A & Citovsky V, Development Biol, 294 (2006) 83.CrossRefGoogle Scholar
  24. 24.
    Jenkins J, Mayans O, Smith D, Worboys K & Pickersgill RW, J Mol Biol, 305 (2001) 951.PubMedCrossRefGoogle Scholar
  25. 25.
    Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markoviè O & Eklund H, FEBS Lett, 514 (2002) 243.PubMedCrossRefGoogle Scholar
  26. 26.
    Epstein E, Mineral nutrition of plant: principles and perspectives, Wiley, New York, (1972) p 39.Google Scholar
  27. 27.
    Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D & Tsemoglou D, Plant Cell, 17 (2005) 849.PubMedCrossRefGoogle Scholar
  28. 28.
    Hothorn M, D’Angelo I, Márquez JA, Greiner S & Scheffzek K, J Mol Biol, 335 (2004) 987.PubMedCrossRefGoogle Scholar
  29. 29.
    Dorokhov YL, Skurat EV, Frolova OY, Gasanova TV, Ivanov PA, Ravin NV, Skryabin KG, Mäkinen KM, Klimyuk VI, Gleba YY & Atabekov JG, FEBS Lett, 560 (2006) 3329.CrossRefGoogle Scholar
  30. 30.
    Chen YR & Chu FH, Q J Chinese Forestry, 41 (2008b) 1.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.School of Forestry and Resource ConservationNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations