Advertisement

Results in Mathematics

, Volume 3, Issue 1–2, pp 125–127 | Cite as

Boolesche Methoden bei zweidimensionaler Interpolation

  • Horst Posdorf
  • Walter Schempp
Short Communication Berichte über Mathematische Dissertationen Short Communication on Mathematical Dissertation
  • 7 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    F.-J. Delvos and H. Posdorf, N-th Order Blending. In: Constructive Theory of Functions of Several Variables, pp. 53–64. W. Schempp and K. Zeller, editors. Lecture Notes in Mathematics Vol. 571. Berlin-Heidelberg-New York: Springer 1977.CrossRefGoogle Scholar
  2. [2]
    F.-J. Delvos, H. Posdorf and W. Schempp, Serendipity-Type Bivariate Interpolation. In: Multivariate Approximation, pp. 47–56. D. C. Handscomb, editor. London: Academic Press 1978.Google Scholar
  3. [3]
    W. J. Gordon, Distributive Lattices and Approximation of Multivariate Functions. In: Proceedings Symp. Approximation with Special Emphasis on Spline Functions (Madison, Wisc., 1969), pp. 223–277. I. J. Schoenberg, editor. New York: Academic Press 1969.Google Scholar
  4. [4]
    W. J. Gordon, Blending-function Methods of Bivariate and Multivariate Interpolation and Approximation. SIAM J. Num. An. 8, (1971), 158–177.MATHCrossRefGoogle Scholar
  5. [5]
    W. J. Gordon and C. A. Hall, Transfinite Element Methods: Blending-Function Interpolation over Arbitrary Curved Element Domains. Num. Math. 21, (1973), 109–129.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    F. Melkes, Reduced Piecewise Bivariate Hermite Interpolations. Num. Math. 29, (1972), 326–340.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1980

Authors and Affiliations

  • Horst Posdorf
  • Walter Schempp

There are no affiliations available

Personalised recommendations