Advertisement

Results in Mathematics

, Volume 6, Issue 1–2, pp 64–70 | Cite as

Bricks in hereditary length categories

  • Claus Michael Ringel
Forschungsbeiträge Research paper

Keywords

Finite Length Endomorphism Ring Springer Lecture Note Indecomposable Module Indecomposable Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and GabrieVs theorem. Russian Math. Surveys 28 (1973), 17–32.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    P. Gabriel Indecomposable representations II, Symposia Math. Inst. Naz. Alta. Mat. 11 (1973), 81–104.MathSciNetGoogle Scholar
  3. [3]
    P. Gabriel, Auslander-Reiten sequences and representation finite algebras. In: Representation theory I, Springer Lecture Notes 831 (1980), 1–71.MathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Happel and C. M. Ringel, Tilted algebras. To appear in Trans. Amer. Math. Soc.Google Scholar
  5. [5]
    C. M. Ringel, Representations of K-species and bimodules. J. Algebra 41 (1976), 269–302.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    C. M. Ringel, The rational invariants of tame quivers. Invent. Math. 58 (1980), 217–239.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    C. M. Ringel, Report on the Brauer-Thrall conjectures: Rojter’s theorem and the theorem of Nazarova and Rojter. In: Representation theory I. Springer Lecture Notes 831 (1980), 104–136.MathSciNetCrossRefGoogle Scholar
  8. [8]
    C. M. Ringel, Tarne algebras. In: Representation theory I. Springer Lecture Notes 831 (1980), 137–287.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1983

Authors and Affiliations

  • Claus Michael Ringel
    • 1
  1. 1.Fakultät für Mathematik UniversitätBielefeld

Personalised recommendations