Results in Mathematics

, Volume 25, Issue 1–2, pp 153–165 | Cite as

Steiner-Systeme und Stein-Quasigruppen

  • H. Zeitler


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

G. Literatur

  1. [1]
    A. Beutelspacher; Einführung in die endliche Geometrie I, Mannheim (1982)Google Scholar
  2. [2]
    J. Denes — A. Keedwell, Latin squares and their applications, Budapest (1974)Google Scholar
  3. [3]
    B. Ganter — H. Werner, Co-ordinatizing Steiner systems, Annals of Disc. Math. 7 (1980) 3–25MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    A. Hedayat, An application of sum composition: A self orthogonal latin square of order 10. J.Comb.Theory (a) 14 (1973) 256–260MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    K. Heinrich, Latin squares with and without subsquares of prescribed type, Annals of Disc. Math. 46 (1991) 101–147MathSciNetCrossRefGoogle Scholar
  6. [6]
    H. Karzel — K. Sörensen — D. Windelberg, Einführung in die Geometrie, Göttingen (1973)Google Scholar
  7. [7]
    R. Rees — S. R. Stinson, On the existence of incomplete designs of block size 4 having one hole, Util. Math 35 (1981) 223–230MathSciNetGoogle Scholar
  8. [8]
    M. de Resmini, On k-sets of type (m,n) in a Steiner system S(2,1,v), Lecture notes 49, Finite Geometries and Designs (1981) 104-113Google Scholar
  9. [9]
    B. Segre, Lectures on modern geometry, Roma (1961)Google Scholar
  10. [10]
    Shen Hao — H. Zeitler, About Steiner systems S(2,4,v) with exactly one or without any maximal subsystem, erscheintGoogle Scholar
  11. [11]
    H. Zeitler, Über Steiner Systeme S(2,4,v), Jugoslavenska Akademija Znanosti i Umjetnosti 9 (1990) 161–168MathSciNetMATHGoogle Scholar
  12. [12]
    H. Zeitler, About the number of maximal subsyterns in S(2,4,v), erscheintGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1994

Authors and Affiliations

  • H. Zeitler
    • 1
  1. 1.Fakultät für Mathematik und PhysikUniversität BayreuthBayreuth

Personalised recommendations