Results in Mathematics

, Volume 22, Issue 3–4, pp 761–780 | Cite as

Mean Value Formulas, Weyl’s Lemma snd Liouville Theorems For δ2 and Stokes’ System

  • Christian G. Simader


Harmonic Function Weight Factor Maximum Principle Harnack Inequality Liouville Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CoHig]
    [CoHig]_Courant, R., Hubert, D.: Methoden der Mathematischen Physik II. Springer-Verlag, Berlin, Heidelberg, New York (1968).MATHCrossRefGoogle Scholar
  2. [CoHie]
    [CoHie] Courant, R., Hubert, D.: Methods of mathematical physics. Vol. II. Interscience Publishers, New York, London (1962).MATHGoogle Scholar
  3. [DaLi]
    Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology. Vol. 1. Springer-Verlag, Berlin, Heidelberg (1990).CrossRefGoogle Scholar
  4. [GiTr]
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin, Heidelberg, New York (1977).MATHCrossRefGoogle Scholar
  5. [He]
    Hellwig, G.: Partielle Differentialgleichungen. Teubner-Verlag, Stuttgart (1960).MATHGoogle Scholar
  6. [Kr]
    Kratz, W.: On the representation of Stokes flows. Siam J. Math. Anal. 22, 414–423 (1991).MathSciNetMATHCrossRefGoogle Scholar
  7. [Mü]
    Müller, Reinhard: Über die Differentialgleichung Δmu = f. Diploma thesis, University of Bayreuth (1989).Google Scholar
  8. [Ni]
    Nicolescu, M.: Les fonctions polyharmoniques. Hermann & Cie, Éditeurs, Paris (1936).Google Scholar
  9. [SiSo]
    Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in Lq-spaces for bounded and exterior domains. In G.P. Galdi (edit.): Mathematical problems relating to the Navier-Stokes equation. World Scientific Publishing Co., Singapore, New Jersey, London (to appear 1992).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1992

Authors and Affiliations

  • Christian G. Simader
    • 1
  1. 1.Mathematisches InstitutUniversität BayreuthBayreuth

Personalised recommendations