Results in Mathematics

, Volume 45, Issue 1–2, pp 88–105 | Cite as

Solvability of linear differential algebraic equations with properly stated leading terms

  • Roswitha März


In this paper, general solvability statements on linear continuous coefficient differential algebraic equations with properly stated leading terms are derived by means of decoupling projector functions decomposing the differential algebraic equation into its characteristic components.


Differential algebraic equations regularity tractability index initial value problems 

AMS subject classification

34A09 34A30 34A12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. März, The index of linear differential algebraic equations with properly stated leading terms. Results in Mathematics 42(2002), 308–338.MATHCrossRefGoogle Scholar
  2. [2]
    P.J. Rabier, W.C. Rheinboldt, Theoretical and numerical analysis of differential algebraic equations. Handbook of Numerical Analysis, Vol VIII, Elsevier Publ. Amsterdam, 2002.Google Scholar
  3. [3]
    K. Balla, R. März, A unified approach to linear differential algebraic equations and their adjoints. Zeitschrift f. Analysis und ihre Anwendungen 21(2002)3, 783–802.MATHGoogle Scholar
  4. [4]
    R. März, Differential algebraic systems anew. Applied Numerical Mathematics 42(2002), 315–335.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    G. Zielke, Motivation und Darstelllung von verallgemeinerten Matrixinversen. Beiträge zur Numerischen Mathematik 7(1979), 177–218.MathSciNetMATHGoogle Scholar
  6. [6]
    R. März, Canonical projectors for linear differential algebraic equations. Computers Math. Applic. 31(1996) 4/5, 121–135.MATHCrossRefGoogle Scholar
  7. [7]
    E. Griepentrog, R. März, Differential-algebraic equations and their numerical treatment. Teubner, Leipzig, 1986.MATHGoogle Scholar
  8. [8]
    I. Schumilina, Index-3 DAEs with properly stated leading term. Humboldt-Universität zu Berlin Institut für Mathematik, Preprint 2001-20, 2001.Google Scholar
  9. [9]
    L. Dai, Singular control systems. Lect. Notes Control Inf. Sci. 118, Springer, Berlin 1989.Google Scholar
  10. [10]
    P.C. Müller, Kausale und nichtkausale Descriptorsysteme. Z. Angew. Math. Mech. 77(1997), Suppl. 1, 231–232Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2004

Authors and Affiliations

  • Roswitha März
    • 1
  1. 1.Humboldt-Universität zu Berlin, Institut für MathematikBerlin

Personalised recommendations