Results in Mathematics

, Volume 27, Issue 3–4, pp 402–411 | Cite as

On some alternative quadratic equations

  • Fulvia Skof


From the quadratic functional equation ƒ(x + y) + ƒ(x − y) 2ƒ(x) 2f(y) = 0 various alternative equations are derived here by grouping in different ways its terms and then equating norms. Some equivalence results are proved in the class of functionals ƒ: X → (ℝ, ¦· ¦). Suitable examples concerning operators ƒ: X → (E,∥· ∥) with values in normed spaces show that in this more general setting such an equivalence can fail to be true.

AMS 1991 Math. Subject Classification

39B52 39B22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aczél J., Dhombres J., Functional equations in several variables, Cambridge University Press, Cambridge, 1989.MATHCrossRefGoogle Scholar
  2. [2]
    Dhombres J., Sme aspects of functional equations, Chulalongkorn Univ. Bangkok, 1979.Google Scholar
  3. [3]
    Ger R., On a characterization of strictly convex spaces, Atti Accad. Sc. Torino, 127 (1993), 131–138.MathSciNetMATHGoogle Scholar
  4. [4]
    Skof F., On the functional equation ∥ƒ(x + y) − ƒ(x) = ∥ƒ(y)∥, Atti Accad. Sc. Torino, 127 (1993), 229–237.MathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1995

Authors and Affiliations

  • Fulvia Skof
    • 1
  1. 1.Dipartimento di MatematicaUniversità di TorinoTorinoItalia

Personalised recommendations