Skip to main content
Log in

5DFRXXL region of long myosin light chain kinase causes F-actin bundle formation

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Long myosin light chain kinase (L-MLCK) contains five DFRXXL motifs with ability to bind F-actin. Binding stoichiometry data indicated that each DFRXXL motif might bind each G-actin, but its biological significance remained unknown. We hypothesized that L-MLCK might act as an F-actin bundle peptides by its multiple binding sites of 5DFRXXL motifs to actin. In order to characterize F-actin-bundle formation properties of 5DFRXXL region of long myosin light chain kinase, we expressed and purified 5DFRXXL peptides tagged with HA in vitro. The properties of 5DFRXXL peptides binding to myofilaments or F-actin were analyzed by binding stoichiometries assays. The results indicated that 5DFRXXL peptides bound to myofilaments or F-actin with high affinity. KD values of 5DFRXXL binding to myofilaments and F-actin were 0.45 and 0.41 μmol/L, respectively. Cross-linking assay demonstrated that 5DFRXXL peptides could bundle F-actin efficiently. Typical F-actin bundles were observed morphologically through determination of confocal and electron microscopy after adding 5DFRXXL peptides. After transfection of pEGFP-5DFRXXL plasmid into eukaryocyte, spike structure was observed around cell membrane edge. We guess that such structure formation may be attributable to F-actin over-bundle formation caused by 5DFRXXL peptides. Therefore, we suppose that L-MLCK may be a new bundling protein and somehow play a certain role in organization of cell skeleton besides mediating cell contraction by it kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kamm, K. E., Stull, J. T., The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Annu. Rev. Pharmacol. Toxicol, 1985, 25: 593–620.

    Article  Google Scholar 

  2. Hartshorne, D. J., Biochemistry of the contractile process in smooth muscle, in Physiology of the Gastrointestinal Tract (ed. Johnson, L. R.), New York: Raven Press, 1987, 423–482.

    Google Scholar 

  3. Stull, J. T., Lin, P. J., Krueger, J. K. et al., Myosin light chain kinase: Functional domains and structural motifs, Acta Physiol. Scand, 1998, 164(n4): 471–482.

    Google Scholar 

  4. Kamm, K. E., Stull, J. T., Dedicated myosin light chain kinases with diverse cellular functions, J. Biol. Chem., 2001, 276(n7): 4527–30.

    Article  Google Scholar 

  5. Schoenwaelder, S. M., Burridge, K., Bidirectional signaling between the cytoskeleton and integrins, Curr. Opin. Cell Biol, 1999, 11(n2): 274–286.

    Article  Google Scholar 

  6. Bresnick, A. R., Molecular mechanisms of nonmuscle myosin-II regulation, Curr. Opin. Cell Biol, 1999, 11(n1): 26–33.

    Article  Google Scholar 

  7. Sato, M., Tani, E., Fujikawa, H. et al., Involvement of Rhokinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm, Circ. Res., 2000, 87: 195–200.

    Article  Google Scholar 

  8. Van Nieuw-Amerongen, G. P., van Delft, S., Vermeer, M. A. et al., Activation of RhoA by thrombin in endothelial hypermeability: Role of Rho kinase and protein tyrosine kinase, Circ. Res., 2000, 87(n4): 335–340.

    Article  Google Scholar 

  9. Jung, C., Chylinski, T. M., Pimenta, A. et al., Neurofilament transport is dependent on actin and myosin, J. Neurosci., 2004, 24(n43): 9486–9496.

    Article  Google Scholar 

  10. Clayburgh, D. R., Rosen, S., Witkowski, E. D. et al., A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability, J. Biol. Chem., 2004, 279(n53): 55506–55513.

    Article  Google Scholar 

  11. Tran, Q. K., Watanabe, H., Zhang, X. X. et al., Involvement of myosin light-chain kinase in chloride-sensitive Ca2+ influx in porcine aortic endothelial cells, Cardiovasc. Res., 1999, 44(n3): 623–631.

    Article  Google Scholar 

  12. Szaszi, K., Kurashima, K., Kapus, A. et al., RhoA and Rho kinase regulate the epithelial Na+/H+ exchanger NHE3, Role of myosin light chain phosphorylation, J. Biol. Chem., 2000, 275(n37): 28599–28606.

    Article  Google Scholar 

  13. Aromolaran, A. S., Albert, A. P., Large, W. A., Evidence for myosin light chain kinase mediating noradrenaline-evoked cation current in rabbit portal vein myocytes, J. Physiol. (Lond.), 2000, 524(n3): 853–863.

    Article  Google Scholar 

  14. Ammit, A. J., Armour, C. L., Black, J. L., Myosin light chain kinase content is increased in human sensitised airway smooth muscle, Am. J. Respir. Crit. Care Med., 2000, 161(n1): 257–263.

    Article  Google Scholar 

  15. Smith, L., Su, X., Lin, P. et al., Identification of a novel actin binding motif smooth muscle myosin light chain kinase, J. Biol. Chem., 1999, 274(n41): 29433–29438.

    Article  Google Scholar 

  16. Smith, L., Stull, J. T., Myosin light chain kinase binding to actin filaments, FEBS Lett., 2000, 480(n2–3): 298–300.

    Article  Google Scholar 

  17. Smith, L., Parizi-Robinson, M., Zhu, M. S. et al., Properties of long myosin light chain kinase binding to F-actin in vitro and in vivo, J. Biol. Chem., 2002, 277(n38): 35597–35604.

    Article  Google Scholar 

  18. Lin, P. J., Luby-Phelps, K., Stull, J. T., Binding of myosin light chain kinase to cellular actin-myosin filaments, J. Biol. Chem., 1997, 272(n11): 7412–7420.

    Article  Google Scholar 

  19. Wang, Z., Meng, X. M., Cao, H. Q. et al., Characteristics of the binding features of Nelin with F-actin and screening Nelin interactive proteins, Chin. Sci. Bull., 2004, 49(n23): 2487–2490.

    Google Scholar 

  20. Pollard, T. D., Goldberg, I., Schwarz, W. H., Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin, J. Biol. Chem., 1999, 267(n28): 20339–20345.

    Google Scholar 

  21. Shin, J. H., Gardel, M. L., Mahadevan, L. et al., Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro, Proc. Natl. Acad. Sci. USA, 2004, 101(n26): 9636–9641.

    Article  Google Scholar 

  22. Kudryashov, D. S., Chibalina, M. V., Birukov, K. G. et al., Unique sequence of a high molecular weight myosin light chain kinase is involved in interaction with actin cytoskeleton, FEBS Lett., 1999, 463(n1–2): 67–71.

    Article  Google Scholar 

  23. Poperechnaya, A., Varlamova, O., Lin, P. J. et al., Localization and activity of myosin light chain kinase isoforms during the cell cycle, J. Cell Biol., 2000, 151(n3): 697–708.

    Article  Google Scholar 

  24. Small, J. V., Stradal, T., Vignal, E. et al., The lamellipodium: Where motility begins, Trends Cell Biol., 2002, 12(n3): 112–120.

    Article  Google Scholar 

  25. Melinda, L., Michel, L. T., Kenneth, M. Y., Phosphatases in cell-matrix adhesion and migration, Nat. Rev. Mol. Cell Biol., 2003, 4: 700–711.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsheng Zhu.

About this article

Cite this article

Yang, C., Wei, D., Chen, C. et al. 5DFRXXL region of long myosin light chain kinase causes F-actin bundle formation. Chin.Sci.Bull. 50, 2045–2051 (2005). https://doi.org/10.1007/BF03322799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322799

Keywords

Navigation