Skip to main content
Log in

F-MSAP: A practical system to detect methylation in chicken genome

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

By replacing radiation with fluorescent system in the technique of methylation sensitive amplified polymorphism (MSAP) and optimizing reaction conditions, a modified technique to detect DNA methylation called F-MSAP (fluorescent labeled methylation sensitive amplified polymorphism) was developed. In the present study, cytosine methylation patterns of genomic DNA were investigated in two inbred chickens and their F1 hybrids. Three types of methylation patterns were observed in each individual, namely fully methylated, hemi-methylated or not methylated types. The average incidence of methylation was approximately 40%. The percentage that the F1 hybrid individual inherits the methylation for any given sites from either/both parent amounted to 95%, while the percentage of altered methylation patterns in F1 individual was only 5%, including 14 increased and 12 decreased methylation types, demonstrating that F-MSAP was highly efficient for large-scale detection of cytosine methylation in chicken genome. Our technique can be further extended to other animals or plants with complex genome and rich in methylation polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Courtier, B., Heard, E., Avner, P., Xce haplotypes show modified methylation in a region of the active X chromosome lying 3′ to Xst, Proc. Natl. Acad. Sci. USA, 1995, 92(n8): 3531–3535.

    Article  Google Scholar 

  2. Thorvaldsen, J. L., Duran, K. L., Bartolomei, M. S., Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2, Genes Dev., 1998, 12(n23): 3693–3702.

    Article  Google Scholar 

  3. Momparler, R. L., Bovenzi, V., DNA methylation and cancer, J. Cell Physiol., 2000, 183(n2): 145–154.

    Article  Google Scholar 

  4. Bird, A. P., Taggart, M. H., Variable patterns of total DNA and rDNA methylation in animals, Nucleic Acids Res., 1980, 8(n7): 1485–1497.

    Article  Google Scholar 

  5. Herman, J. G., Graff, J. R., Nelkin, B. D. et al., Methyla-tion-specific PCR: A novel PCR assay for methylation status of CpG islands, Proc. Natl. Acad. Sci. USA, 1996, 93(n18): 9821–9826.

    Article  Google Scholar 

  6. Adorjan, P., Distler, J., Lipscher, E. et al., Tumor class prediction and discovery by microarray-based DNA methylation analysis, Nu-cleic Acids Res., 2002, 30(n5): e21.

    Article  Google Scholar 

  7. Xiong, L. Z., Xu, C. G., Zhang, Q. et al., Patterns of cytosine me-thylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique, Mol. Gen. Genet., 1999, 261(n3): 439–446.

    Article  Google Scholar 

  8. Labra, M., Grassi, F., Imazio, S. et al., Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L., Chemosphere, 2004, 54(n8): 1049–1058.

    Article  Google Scholar 

  9. Aina, R., Sgobati, S., Santagotino, A. et al., Specific hypomethyla-tion of DNA is induced by heavy metals in white clover and indus-trial hemp, Physiol. Plant, 2004, 121(n3): 472–480.

    Article  Google Scholar 

  10. Li, X. Q., Xu, M. L., Korban, S. S., DNA methylation profiles dif-fer between field-and in vitro-grown leaves of apple, Plant Physiol., 2002, 159(n11): 1229–1234.

    Article  Google Scholar 

  11. de Montera, B., Boulanger, L., Taourit, S. et al., Genetic identity of clones and methods to explore DNA, Cloning Stem Cells, 2004, 6(n2): 133–139.

    Article  Google Scholar 

  12. Shaked, H., Kashush, K., Ozkan, H. et al., Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat, Plant Cell, 2001, 13(n8): 1749–1759.

    Google Scholar 

  13. Madlung, A., Masuell, R. W., Watson, B. et al., Remodeling of DNA methylation and transcriptional changes in synthetic Arabi-dopsis allotetraploids, Plant Physiol., 2002, 129(n2): 733–746.

    Article  Google Scholar 

  14. Xu, M. L., Li, X. Q., Korban, S. S., AFLP-based detection of DNA methylation, Plant Mol. Biol. Rep., 2000, 18(n4): 361–368.

    Article  Google Scholar 

  15. Vos, P., Hogers, R., Bleeker, M. et al., AFLP: A new technique for DNA fingerprinting, Nucleic Acids Res., 1995, 23(n21): 4407–4414.

    Article  Google Scholar 

  16. Huang, J. C., Sun, M., A modified AFLP with fluorescence-labelled primers and automated DNA sequencer detection for efficient fin-gerprinting analysis in plants, Biotechnol. Tech., 1999, 13(n4): 277–278.

    Article  Google Scholar 

  17. Zhao, S., Mitchell, S. E., Meng, J. et al., Genomic typing of Es-cherichia coli O157: H7 by semi-automated fluorescent AFLP analysis, Microbes Infect., 2000, 2(n2): 107–113.

    Article  Google Scholar 

  18. Terefework, Z., Kaijalainen, S., Lindstrom, K., AFLP fingerprint-ing as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis, J. Biotech-nol., 2001, 91(n2–3): 169–180.

    Article  Google Scholar 

  19. McClelland, M., Nelson, M., Raschke, E., Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases, Nucleic Acids Res., 1994, 22(n17): 3640–3659.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang.

About this article

Cite this article

Xu, Q., Sun, D. & Zhang, Y. F-MSAP: A practical system to detect methylation in chicken genome. Chin.Sci.Bull. 50, 2039–2044 (2005). https://doi.org/10.1007/BF03322798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322798

Keywords

Navigation