Skip to main content
Log in

Polymerase chain reaction of Au nanoparticle-bound primers

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Polymerase chain reaction (PCR) is a useful technique for in vitro amplification of a DNA fragment. In this paper, a PCR procedure using Au nanoparticle (AuNP) -bound primers was systemically studied. The 5′-SH-(CH2)6-modified primers were covalently attached to the AuNP surface via Au-S bonds, and plasmid pBluescript SK was used as a template. The effects of the concentration of AuNP-bound primers, annealing temperature and PCR cycles were evaluated, respectively. The results indicate that PCR can proceed successfully under optimized condition, with either forward or reverse primers bound to the AuNP surface or with both the two primers bound to the AuNP surface. Development of PCR procedure based on AuNPs not only makes the isolation of PCR products very convenient, but also provides novel methods to prepare AuNP-bound ssDNA and nanostructured material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shen, H. B., Wang, Y. B., Yang, H. F. et al., Covalent immobilization of oligoDNA on the surface of magnetic nanoparticles and surface-enhanced Raman scattering study, Chinese Science Bulletin, 2003, 48(n24): 2698–2702.

    Google Scholar 

  2. Katz, E., Willner, I., Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications, Angew. Chem., 2004, 43: 6042–6108.

    Article  Google Scholar 

  3. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. et al., A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382(n6592): 607–609.

    Article  Google Scholar 

  4. Alivisatos, A. P., Johnsson, K. P., Peng, X. G. et al., Organization of ‘nanocrystal molecules’ using DNA, Nature, 1996, 382 (6592): 609–611.

    Article  Google Scholar 

  5. Daniel, M. C., Astrucm, D., Gold nanoparticles: assembly, supramolecular chemical, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104(n1): 293–346.

    Article  Google Scholar 

  6. Glynou, K., Ioannou, P. C., Christopoulos, T. K. et al., Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization, Anal. Chem., 2003, 75(n16): 4155–4160.

    Article  Google Scholar 

  7. Naik, R. R., Jones, S. E., Murray, C. J. et al., Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display, Advanced Functional Materials, 2004, 14(n1): 25–30.

    Article  Google Scholar 

  8. Holzel, R., Gajovic-Eichelmann, N., Bier, F. F., Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes-towards single molecule DNA nanostructures, Biosensors and Bioelectronics, 2003, 18 (5-6): 555–564.

    Article  Google Scholar 

  9. Li, H. X., Rothberg, L. J., Label-Free colorimetric detection of specific sequences in genomic DNA amplified by the Polymerase Chain Reaction, J. Am. Chem. Soc., 2004, 126(n35): 10958–10961.

    Article  Google Scholar 

  10. Turner, M. S., Penning, S., Sharp, A. et al., Solid-phase amplification for detection of C282Y and H63D hemochromatosis (HFE) gene mutations, Clinical Chemistry, 2001, 47(n8): 1384–1389.

    Google Scholar 

  11. Adessi, C., Matton, G., Ayala, G. et al., Solid phase DNA amplification: characterization of primer attachment and amplification mechanisms, Nucleic Acids Res., 2000, 28: 20e87.

    Article  Google Scholar 

  12. Huber, M., Losert, D., Hiller, R. et al., Detection of single base alterations in genomic DNA by solid phase polymerase chain reaction on oligonucleotide microarrays, Analytical Biochemistry, 2001, 299: 24–30.

    Article  Google Scholar 

  13. Lockley, A. K., Jones, C. G., Bruce, J. S. et al., Colorimetric detection of immobilised PCR products generated on a solid support, Nucleic Acids Res., 1997, 25: 1313–1314.

    Article  Google Scholar 

  14. Frens, G., Controlled nucleation of the regulation of the particle size in monodisperse gold solution, Nat. Phys. Sci., 1973, 241: 20–22.

    Google Scholar 

  15. Nicewarner Pena, S. R., Raina, S., Goodrich, G. P. et al., Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides, J. Am. Chem. Soc., 2002, 124(n25): 7315–7323.

    Article  Google Scholar 

  16. Poddar, S. K., Symmetric vs asymmetric PCR and molecular beacon probe in the detection of a target gene of adenovirus, Molecular and Cellular Probes, 2000, 14: 25–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebai Shen.

About this article

Cite this article

Shen, H., Hu, M., Yang, Z. et al. Polymerase chain reaction of Au nanoparticle-bound primers. Chin.Sci.Bull. 50, 2016–2020 (2005). https://doi.org/10.1007/BF03322794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322794

Keywords

Navigation