Chinese Science Bulletin

, Volume 50, Issue 18, pp 1985–1990 | Cite as

Synthesis of TiO2 nanotubes film and its light scattering property

  • Yutao Ma
  • Yuan Lin
  • Xurui Xiao
  • Xueping Li
  • Xiaowen Zhou


TiO2 nanotubes with diameters of 10 nm and lengths up to 600 nm were fabricated by directly using commercial TiO2 powders P25 as the precursors via sonication-hydrothermal combination approach. TiO2 nanotubes were characterized by means of X-ray powder diffractometer (XRD), scanning electron microscope (SEM), selected area electron diffraction pattern (SAED) and transmission electron microscope (TEM). The light scattering property of film electrodes modified with TiO2 nanotubes was studied and revealed that TiO2 nanotubes can be used as the light scattering centers to increase the light absorption in dye-sensitized solar cells. The TiO2 nanotubes film electrodes mixed with 10% small nanoparticles TiO2 had both strong light scattering property and fine mechanical characteristics, and this kind of electrodes can be used as electrodes in improving the conversion efficiencies of dye-sensitized solar cells.


TiO2 nanotubes dye-sensitized solar cells light scattering property transmlttance spectra reflectance spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238: 37–38.CrossRefGoogle Scholar
  2. 2.
    ÓRegan, B., Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353: 737–739.CrossRefGoogle Scholar
  3. 3.
    Palomares, E., Vilar, R., Durrant, J. R., Heterogeneous colorimetric sensor for mercury salts, Chem. Commun., 2004, 4: 362–363.CrossRefGoogle Scholar
  4. 4.
    Wijnhoven, J. E. G. J., Bechger, L., Vos, W. L., Fabrication and characterization of large macroporous photonic crystals in titania, Chem. Mater., 2001, 13: 4486–4499.CrossRefGoogle Scholar
  5. 5.
    Ferber, J., Luther, J., Computer simulation of light scattering and absorption in dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 1998, 54(n4): 265–275.Google Scholar
  6. 6.
    Rothenberger, G., Comte, P., Grätzel, M., A contribution to the optical design of dye-sensitized nanocrystalline solar cells, Sol. Energy Mater. Sol. Cells, 1999, 58: 321–336.CrossRefGoogle Scholar
  7. 7.
    Lin, Y., Xiao, X. R., Zhang, D. S. et al., Light scattering characteristic of TiO2 nanocrystalline porous films, Chinese Science Bulletin, 2003, 48(n9): 856–858.CrossRefGoogle Scholar
  8. 8.
    Wang, Z. S., Kawauchi, H., Kashima, T. et al., Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coordination Chemistry Reviews, 2004, 248: 1381–1389.CrossRefGoogle Scholar
  9. 9.
    Wang, P., Dai, Q., Zakeeruddin, S. M. et al., Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell, J. Am. Chem. Soc., 2004, 126(n42): 13590–13591.CrossRefGoogle Scholar
  10. 10.
    Ngamsinlapasathian, S., Sakulkhaemaruethai, S., Pavasupree, S. et al., Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure, J. of Photochemistry and Photobiology A: Chemistry, 2004, 164: 145–151.CrossRefGoogle Scholar
  11. 11.
    Liu, S. M., Gan, L. M., Liu, L. H. et al., Synthesis of single-crystalline TiO2 nanotubes, Chem. Mater, 2002, 14: 1391–1397.CrossRefGoogle Scholar
  12. 12.
    Kobayashi, S., Hanabusa, K., Hamasaki, N. et al., Preparation of TiO2 hollow-fibers using supramolecular assemblies, Chem. Mater., 2000, 12: 1523–1525.CrossRefGoogle Scholar
  13. 13.
    Kasuga, T., Hiramatsu, M., Hoson, A., Formation of titanium oxide nanotubes, Langmuir, 1998, 14: 3160–3163.CrossRefGoogle Scholar
  14. 14.
    Kasuga, T., Hiramatsu, M., Hoson, A. et al., Titania nanotubes prepared by chemical processing, Adv. Mater, 1999, 11: 1307–1311.CrossRefGoogle Scholar
  15. 15.
    Zhu, Y. C., Li, H. L., Koltypin, Y. et al., Sonochemical synthesis of titania whiskers and nanotubes, Chem. Commun., 2001, 24: 2616–2617.CrossRefGoogle Scholar
  16. 16.
    Seo, D. S., Lee, J. K., Kim, H., Preparation of nanotube-shaped TiO2 powder, J. of Crystal Growth, 2001, 229: 428–432.CrossRefGoogle Scholar
  17. 17.
    Zhang, S. L., Zhou, J. F., Zhang, Z. J. et al., Morphological structure and physicochemical properties of nanotube TiO2, Chinese Science Bulletin, 2000, 45(n16): 1533–1536.CrossRefGoogle Scholar
  18. 18.
    Chen, Q., Du, G. H., Zhang, S. et al., The structure of trititanate nanotubes, Acta Cryst., 2002, B58: 587–593.Google Scholar
  19. 19.
    Yang, J. J., Jin, Z. S., Wang, X. D. et al., Study on composition structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans., 2003, 3898–3901.Google Scholar
  20. 20.
    Sun, X. M., Li, Y. D., Synthesis and characterization of ion-exchangeable titanate nanotubes, Chem. Eur. J., 2003, 9: 2229–2238.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Yutao Ma
    • 1
    • 2
  • Yuan Lin
    • 1
  • Xurui Xiao
    • 1
  • Xueping Li
    • 1
  • Xiaowen Zhou
    • 1
  1. 1.Key Laboratory of Photochemistry, Center for Molecular Science, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations