Results in Mathematics

, Volume 41, Issue 3–4, pp 265–269 | Cite as

Some Properties of The Automorphisms of a Bernstein Algebra

  • R. Costa
  • L. S. Ikemoto Murakami


In this short note we show that if A is a nuclear Bernstein algebra then the group of automorphisms of M(A), its multiplication algebra, has a proper subgroup isomorphic to Aut A.

1991 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Yu. I. Lyubich: Mathematical Structures in Population Genetics, Biomathematics 22, Springer, Berlin-Heidelberg-New York (1992).Google Scholar
  2. [2]
    R. Costa and A. Suazo: The multiplication algebra of a Bernstein algebra: basic results, Comm. Alg. 24 (5), 1809-1821 (1996).Google Scholar
  3. [3]
    R. Costa, L.S. Ikemoto and A. Suazo: On the multiplication algebra of a Bernstein algebra, Comm. Alg. 26 (11), 3727–3736 (1998).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. Costa and L.S. Ikemoto Murakami: On idempotents and isomorphisms of multiplication algebras of Bernstein algebras, Comm. Alg 28 (7), 3265–3276 (2000).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    R.D. Finston: On multiplication algebras, Trans. Am. Math. Soc. 293 (2), 807–818 (1986).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© birkhäuser verlag, basel 2002

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil

Personalised recommendations