Results in Mathematics

, Volume 41, Issue 1–2, pp 140–149 | Cite as

Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs

  • Roland Lortz
  • Ingrid Mengersen


Bounds on the Ramsey number r(Kl,m,Kl,n), where we may assume l ≤ m ≤ n, are determined for 3 ≤ l ≤ 5 and m ≈ n. Particularly, for m = n the general upper bound on r(Kl,n, Kl,n) due to Chung and Graham is improved for those l. Moreover, the behavior of r(K3,m, K3,n) is studied for m fixed and n sufficiently large.

Mathematical Subject Classification



Ramsey numbers complete bipartite graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. R. K. Chung and R. L. Graham, On multicolor Ramsey numbers for complete bipartite graphs, J. Combin. Theory Ser. B 18 (1975), 164–169.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    G. Exoo, H. Harborth, and I. Mengersen, On Ramsey numbers of K2,n in: Graph theory, combinatorics, algorithms, and applications (eds. Y. Alavi et al.), SIAM, Philadelphia 1991, 207–211.Google Scholar
  3. [3]
    F. Harary, Recent results on generalized Ramsey theory for graphs, in: Graph theory and applications, Lecture Notes in Math. 303 (1972), 125–138.CrossRefGoogle Scholar
  4. [4]
    H. Harborth and I. Mengersen, The Ramsey number of K3,3 in: Graph theory, combinatorics, and applications (eds. Y. Alavi et al.), Volume 2, Wiley, New York 1991, 639–644.Google Scholar
  5. [5]
    M. Harborth and I. Mengersen, Some Ramsey numbers for complete bipartite graphs, Australas. J. Combin. 13 (1996), 119–128.MathSciNetMATHGoogle Scholar
  6. [6]
    R. Lortz, Über Ramseyzahlen vollständiger bipartiter Graphen, Dissertation, Technische Universitat Braunschweig 1999.Google Scholar
  7. [7]
    R. Lortz and I. Mengersen, On the Ramsey numbers r(K2,n-1,,K2,n) and r(K2,n K 2,n), Util. Math., to appear.Google Scholar
  8. [8]
    R. Lortz and I. Mengersen, Off-diagonal and asymptotic results on the Ramsey number r(K2,m K 2,n), submitted.Google Scholar
  9. [9]
    W. D. Wallis, A. Penfold Street, and J. Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Math.292 (1972).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2002

Authors and Affiliations

  1. 1.Technische Universität Braunschweig Abteilung Diskrete MathematikGermany
  2. 2.Volkswagen AG Informationssysteme FahrzeugplanungWolfsburgGermany
  3. 3.BraunschweigGermany

Personalised recommendations