Advertisement

Results in Mathematics

, Volume 39, Issue 3–4, pp 357–373 | Cite as

Equivalence of Integral Means

  • Tingfan Xie
  • Xinlong Zhou
Article

Abstract

Let Aρf and Lρf be the integral means of f on a ball and its sphere, respectively. Frequently they are regarded as a bridge because of the smoothness. In this paper we will investigate their equivalence. More precisely, we will prove, among others, the following relationship: for any 1 ≤ p ≤ ∞ and d ≥ 2,
$$\parallel A_\rho f-f\parallel _p\sim \parallel L_\rho f-f\parallel _p,\quad \forall f\in L^p({\rm R}^d).$$

AMS subject classifications

26A15 26B20 41A35 41A63 

Key Words

integral mean K-modulus iterates of operators Bessel function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bennett, C. and Sharply, R., Interpolation of operators, Academic Press, 1988.Google Scholar
  2. [2]
    de Boor, C., A practical guide to splines, Springer, New York, 1978.MATHCrossRefGoogle Scholar
  3. [3]
    Butzer, P. L. and Berens, H., Semi-groups of Operators and Approximation, Springer, New York, 1967.MATHCrossRefGoogle Scholar
  4. [4]
    Folland, G. B., Introduction to Partial Differential Equations, Princeton University Press, Princeton, 1976.MATHGoogle Scholar
  5. [5]
    Helms, L. L., Introduction to Potential Theory, John Wiley & Sons, Inc., 1963.Google Scholar
  6. [6]
    Johnen, H. and Scherer, K., On the equivalence of the K-functional and moduli of continuity and some applications, In: Constructive Theory of Functions of Several Variables (Proc. Conf., Oberwolfach 1976), Lecture Notes in Mathematics vol. 577, Springer, 119-140.Google Scholar
  7. [7]
    Knoop, H. -B. and Zhou, X. L., The lower estimate for linear positive operators, I, Constr. Approx. 11 (1995), 53–66.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Nicholson, J. W., Generalisation of a theorem due to Sonine, Quarterly J. XLVIII. (1920), 321–329.Google Scholar
  9. [9]
    Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.MATHGoogle Scholar
  10. [10]
    Timan, A. F., Theory of Approximation of Functions of a Real Variable, Mac Millan, New York, 1963.MATHGoogle Scholar
  11. [11]
    Watson, G. N., Theory of Bessel Functions, Cambridge University Press 1966.Google Scholar
  12. [12]
    Zhou, X. L., Approximationsordnung und Regularität von Differentialoperatoren, Habilitationsschrift, Gerhard-Mercator-Universität Duisburg, 1996.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2001

Authors and Affiliations

  1. 1.Department of Computer SciencceChina Institute of MetrologyHangzhouChina
  2. 2.Department of MathematicsUniversity of DuisburgDuisburgGermany

Personalised recommendations