Results in Mathematics

, Volume 17, Issue 1–2, pp 37–51 | Cite as

Eigenfunctions and Eigenvalues on Surfaces of Revolution

  • Brigitte Beekmann


Irreducible Representation Irreducible Component Source Function Nodal Line Dose Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Adams, J.F.: Lectures on Lie Groups. Benjamin 1969Google Scholar
  2. [Bk1]
    Beekmann, B.: Eigenfunktionen und Eigenwerte des Laplaceoperators auf Drehflächen und die Gliederung des Spektrums nach den Darstellungen der Isometriengruppe. Dissertation Hagen 1987. Schriftenreihe des Mathematischen Instituts der Universität Münster 2. Serie, Heft 47 (1988)Google Scholar
  3. [Bk2]
    Beekmann, B.: On the Spectrum of Riemannian G-Manifolds. To appear.Google Scholar
  4. [B]
    Bourbaki, N.: Éléments de mathématique. Fase. XXIII, Livre II: Algèbre. Hermann, Paris 1958Google Scholar
  5. [Ba]
    Barta, J.: Sur la vibration fondamentale d’une membrane. C. R. Acad. Sci. 204, 472–473 (1937)MATHGoogle Scholar
  6. [Bé]
    Bérard, P. H.: Spectral Geometry: Direct and Inverse Problems. Lecture Notes in Mathematics 1207, Springer-Verlag. Berlin 1986Google Scholar
  7. [BM]
    Bérard, P. et Meyer, D.: Inégalités isopérimétriques et applications. Ann. Scient. Ec. Norm. Sup:, 4e série, 15, 513–542 (1982)MATHGoogle Scholar
  8. [BGM]
    Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics 194, Springer-Verlag. Berlin 1971Google Scholar
  9. [Bô]
    Bôcher, M.: On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic. Trans. Amer. Math. Soc. 1, 40–52 (1900)MathSciNetMATHCrossRefGoogle Scholar
  10. [BH1]
    Brüning, J. and Heintze, E.: Representations of Compact Lie Groups and Elliptic Operators. Inventiones math. 50, 169–203 (1979)MATHCrossRefGoogle Scholar
  11. [BH 2]
    Brüning, J. and Heintze, E.: Spektrale Starrheit gewisser Drehflächen. Math. Ann. 269, 95–101 (1984)MathSciNetMATHCrossRefGoogle Scholar
  12. [C]
    Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press. Orlando 1984Google Scholar
  13. [ChaF]
    Chavel, I. and Feldman, E. A.: The first eigenvalue of the Laplacian on manifolds of nonnegative curvature. Am. Math. Soc. Proc. Symp. Pure Math. 27 (1975)Google Scholar
  14. [Ch]
    Cheng, S. Y.: Eigenfunctions and Nodal Sets. Comment. Math. Helvetici 51, 43–55 (1976)MATHCrossRefGoogle Scholar
  15. [CH]
    Courant, R. and Hilbert, D.: Methods of Mathematical Physics. Vol. I. Wiley (Inter-science), New York 1953Google Scholar
  16. [DoC]
    DoCarmo, M.: Differential Geometry of Curves and Surfaces. Prentice Hall, Inc. Engle-wood Cliffs, New Jersey 1976Google Scholar
  17. [L]
    Lang, S.: Differential manifolds. Springer-Verlag New York 1985Google Scholar
  18. [Le]
    Lewy, H.: On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere. Comm. in Part. Diff. Equ. 2(12), 1233–1244 (1977)MathSciNetMATHCrossRefGoogle Scholar
  19. [M]
    Mostert, P. S.: On a compact Lie group acting on a manifold. Ann. Math. 65, 447–455 (1957): Errata, ibid. 66, 589 (1957); Footnote p. 224 in: Hofmann, K. H. and Mostert, P. S.: Compact groups acting with (n - 1)- dimensional orbits on subspaces of n-manifolds. Math. Ann. 167, 224–239 (1966)MathSciNetMATHCrossRefGoogle Scholar
  20. [PS]
    Polya, G. and Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies 27, Princeton University Press 1951Google Scholar
  21. [SW]
    Simon, U. und Wissner, H.: Geometrische Aspekte des Laplace-Operators. Jahrbuch Überblicke Mathematik 1982, 73–92. Bibl. Inst. Mannheim 1982Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1990

Authors and Affiliations

  • Brigitte Beekmann
    • 1
  1. 1.Fachbereich Mathematik und Informatik der FernLTniversität HagenHagen

Personalised recommendations