Advertisement

SeMA Journal

, Volume 52, Issue 1, pp 73–96 | Cite as

An overview of second order tangent sets and their application to vector optimization

  • G. Giorgi
  • B. Jiménez
  • V. Novo
Artículos
  • 94 Downloads

Abstract

We take into consideration the main definitions and properties of second order local approximations of sets (or second order tangent sets or second order variational sets). We shall be mainly concerned with the “second order tangent set”, initially proposed by Kawasaki [32, 33] and extensively studied by Cominetti [15] and by Bonnans and Shapiro [8], and with the “asymptotic second order tangent cone”, initially proposed by Penot [39] and independently by Cambini, Martein and Vlach [10]. As an application we establish second order necessary and second order sufficient optimality conditions in terms of second order approximations of sets, for a vector optimization problem.

Key words

Vector optimization first order tangent cones second order tangent sets second order local approximations second order variational sets second order tangent cones 

AMS subject classifications

90C29 90C30 49K27 49J52 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Aghezzaf, M. Hachimi, Second order optimality conditions in multiobjective optimization problems, J. Optim. Theory Appl., 102 (1999), no. 1, 37–50.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    J.P. Aubin, H. Frankowska, Set-valued analysis, Birkhäuser, Boston (1990).MATHGoogle Scholar
  3. [3]
    M.S. Bazaraa, CM. Shetty, Foundations of optimization, Springer Verlag, Berlin (1976).MATHCrossRefGoogle Scholar
  4. [4]
    A. Ben-Tal, J. Zowe, A unified theory of first and second order conditions for extremum problems in topological vector spaces, Math. Progr. Stud., 19 (1982), 39–76.MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Bigi, On sufficient second order optimality conditions in multiobjective optimization, Math. Methods Oper. Res., 63 (2006), no. 1, 77–85.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    G. Bigi, M. Castellani, Second order optimality conditions for differentiable multiobjective problems, RAIRO Oper. Res., 34 (2000), 411–426.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J.F. Bonnans, R. Cominetti, A. Shapiro, Second order optimality conditions based on parabolic second order tangent sets, SIAM J. Optim., 9 (1999), no. 2, 466–492.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    J.F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, Springer-Verlag, New York (2000).MATHGoogle Scholar
  9. [9]
    A. Cambini, L. Martein, First and second order optimality conditions in vector optimization, J. Stat. Manag. Syst., 5 (2002), no. 1–l3, 295–319.MathSciNetMATHGoogle Scholar
  10. [10]
    A. Cambini, L. Martein, M. Vlach, Second order tangent sets and optimality conditions, Math. Japon., 49 (1999), 451–461.MathSciNetMATHGoogle Scholar
  11. [11]
    M. Castellani, A necessary second-order optimality condition in nonsmooth mathematical programming, Oper. Res. Lett., 19 (1996), no. 2, 79–86.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. Castellani, M. Pappalardo, Local second-order approximations and applications in optimization, Optimization, 37 (1996), no. 4, 305–321.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    F.H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 305 (1975), 246–262.Google Scholar
  14. [14]
    F.H. Clarke, Optimization and nonsmooth analysis, John Wiley & Sons, New York (1983).MATHGoogle Scholar
  15. [15]
    R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions, Appl. Math. Optim., 21 (1990), no. 3, 265–287.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    K.H. Elster, J. Thierfelder, Abstract cone aproximations and generalized differentiability in nonsmooth optimization, Optimization, 19 (1988), no. 3, 315–341.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    K.H. Elster, J. Thierfelder, On cone aproximations and generalized directional derivatives, In: F.H. Clarke, V.F. Demyanov and F. Giannessi (Eds.), Nonsmooth Optimization and Related Topics, Plenum Press, New York (1988), 133–154.Google Scholar
  18. [18]
    K.H. Elster, J. Thierfelder, The general concept of cone aproximations in nondifferentiable optimization, Lecture Notes in Econom. and Math. Systems 255 (1984), 170–189.MathSciNetGoogle Scholar
  19. [19]
    G. Giorgi, A. Guerraggio, On the notion of tangent cone in mathematical programming, Optimization, 25 (1992), no. 1, 11–23.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    G. Giorgi, A. Guerraggio, Characterizations, comparisons, algebraic and topological properties of tangent cones, J. Slat. Manag. Sci., 5 (2002), no. 1–3, 275–294.MathSciNetMATHGoogle Scholar
  21. [21]
    G. Giorgi, A. Guerraggio, J. Thierfelder, Mathematics of optimization: smooth and nonsmooth case, American Elsevier, Amsterdam (2004).MATHGoogle Scholar
  22. [22]
    A. Guerraggio, D.T. Luc, Optimality conditions for C1,1 constrained multiobjective problems, J. Optim. Theory Appl., 116 (2003), no. 1, 117–129.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    C. Gutiérrez, B. Jiménez, V. Novo, New second-order directional derivative and optimality conditions in scalar and vector optimization, J. Optim. Theory Appl, 142 (2009), no. 1, 85–106.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    M. Hachimi, B. Aghezzaf, New results on second-order optimality conditions in vector optimization problems, J. Optim. Theory Appl., 135 (2007), no. 1, 117–133.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    K.H. Hoffmann, H.J. Kornstaedt, Higher-order necessary conditions in abstract mathematical programming, J. Optim. Theory Appl., 26 (1978), no. 4, 533–568.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    J. Jahn, Vector optimization. Theory, applications, and extensions, Springer-Verlag, Berlin (2004).MATHGoogle Scholar
  27. [27]
    B. Jiménez, Strict efficiency in vector optimization, J. Math. Anal. Appl., 265 (2002), no. 2, 264–284.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    B. Jiménez. V. Novo, Second order necessary conditions in set constrained differentiable vector optimization, Math. Methods Oper. Res., 58 (2003), no. 2, 299–317.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    B. Jiménez, V. Novo, Optimality conditions in differentiable vector optimization via second order tangent sets, Appl. Math. Optim., 49 (2004), no. 2, 123–144.MathSciNetMATHGoogle Scholar
  30. [30]
    B. Jiménez, V. Novo, Characterization of the cone of attainable directions, J. Optim. Theory Appl., 131 (2006), no. 3, 493–499.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    V. Kalashnikov, B. Jadamba, A.A. Khan, First and second order optimality conditions in set optimization, In: S. Dempe and V. Kalashnikov (Eds.), Optimization with multivalued mappings. Theory, applications, and algorithms. Optimization and Its Applications, Vol. 2, Springer, New York (2006), 265–276.CrossRefGoogle Scholar
  32. [32]
    H. Kawasaki, Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualifications, J. Optim. Theory Appl., 57 (1988), no. 2, 253–264.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    H. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second order necessary conditions for minimization problems, Math. Program., 41 (1988), no. 1, 73–96.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    T. Maeda, Second-order conditions for efficiency in nonsmooth multiobjective optimization problems, J. Optim. Theory Appl., 122 (2004), no. 3, 521–538.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    K.M. Miettinen, Nonlinear multiobjective optimization, Kluwer Academic Publishers, Boston (1999).MATHGoogle Scholar
  36. [36]
    J. Palata, A survey of conical approximations used in optimization, Optimization, 20 (1989), no. 2, 147–161.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    .J.P. Penot, Calcul sous-differential et optimisation, J. Funct. Anal, 27 (1978), no. 2, 248–276.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    J.P. Penot, Optimality conditions in mathematical programming and composite optimization, Math. Program., 67 (1994), 225–245.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    .J.P. Penot, Second-order conditions for optimization problems with constraints, SIAM J. Control Optim., 37 (1998), no. 1, 303–318.MathSciNetCrossRefGoogle Scholar
  40. [40]
    J.P. Penot, Recent advances on second-order optimality conditions, In: V.H. Nguyen, J.J. Strodiot and P. Tossings (Eds.), Optimization, Lecture Notes in Econom. and Math. Systems, Vol. 481, Springer, Berlin (2000), 357–380.CrossRefGoogle Scholar
  41. [41]
    R.T. Rockafellar, La théorie des sous-gradients el ses applications à l’optimisation, Les Presses de l’Université de Montréal (1979), Montréal.Google Scholar
  42. [42]
    R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math., 32 (1980), no. 2, 257–280.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    R.T. Rockafellar, R.J. Wets, Variational analysis, Springer, Berlin (1998).MATHCrossRefGoogle Scholar
  44. [44]
    A. Ruszczynski, Nonlinear optimization, Princeton University Press, Princeton (2006).MATHGoogle Scholar
  45. [45]
    D.E. Ward, The quantificational tangent cones, Canad. J. Math., 40 (1988), 666–694.MathSciNetCrossRefGoogle Scholar
  46. [46]
    D.E. Ward, Directional derivatives calculus and optimality conditions in nonsmooth mathematical programming, J. Inf. Optim. Sci., 10 (1989), 81–96.MATHGoogle Scholar
  47. [47]
    D.E. Ward, Calculus for parabolic second-order derivatives, Set Valued Anal., 1 (1993), no. 3, 213–246.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    D.E. Ward, A chain rule for parabolic second-order epiderivatives, Optimization, 28 (1994), no. 3–4, 223–236.MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    D.E. Ward, A comparison of second-order epiderivatives: calculus and optimality conditions, J. Math. Anal. Appl., 193 (1995), no. 2, 465–482.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2010

Authors and Affiliations

  1. 1.Faculty of EconomicsUniversità degli Studi di PaviaItaly
  2. 2.Departamento de Matemática AplicadaUniversidad Nacional de Educación a DistanciaSpain

Personalised recommendations