Results in Mathematics

, Volume 7, Issue 2, pp 154–163 | Cite as

An extension of a theorem of Walsh

  • A. S. CavarettaJr
  • H. P. Dikshit
  • A. Sharma
Research papers


Positive Integer Linear Algebra Distinct Point Usual Pattern Mixed Case 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. S. Cavaretta Jr., A. Sharma and R. S. Varga, A Theorem of J. L. Walsh (Revisited) Pacific J. Math. (to appear).Google Scholar
  2. [2]
    H. Hermann, Some remarks on an extension of a Theorem of Walsh. Journal of Approx. Theory. 39, 1983, 241–246.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    T. J. Rivlin, On Walsh Equiconvergence, Journal of Approx. Theory, 36, 1982, 334–345.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    E. B. Saff and R. S. Varga, A note on the sharpness of Walsh's Theorem and its extensions in the roots of unity. Acta Math. Hungar. 41, 1983, 371–377.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    R. B. Saxena, A. Sharma and Z. Ziegler, Hermite-Birkhoff Interpolation on Roots of unity and Walsh equiconvergence, J. Linear Algebra and Applications.Google Scholar
  6. [6]
    R. S. Varga, Topics in Polynomial and Rational Interpolation and Approximation, Seminario de Math. Superieures, Univ. of Montreal. 1981–82, Chapter IV, 69–93.Google Scholar
  7. [7]
    J. L. Walsh, Interpolation and Approximation in the complex domain, A.M.S. Colloq. Publications XX. Providence R.I. 5th ed., 1969, (p. 153).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1984

Authors and Affiliations

  • A. S. CavarettaJr
    • 1
  • H. P. Dikshit
    • 1
  • A. Sharma
    • 1
  1. 1.Department of MathematicsThe University of AlbertaEdmontonCanada

Personalised recommendations