Results in Mathematics

, Volume 12, Issue 3–4, pp 395–400 | Cite as

Non-Commutative Affine Kinematic Spaces and Their Automorphism Group

  • Silvia Pianta


Vector Space Automorphism Group Scalar Multiplication Semidirect Product Affine Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Karzel, H.: Fastvektorräume, unvollständige Fastkörper und ihre abgeleiteten geometrischen Strukturen. Mitt. Sem. Univ. Giessen, 166/IV (1984), 127–139MathSciNetGoogle Scholar
  2. [2]
    Karzel, H.: Kinematic spaces. Ist. Naz. Alta Matematica, Symposia Mathematica, XI (1973), 413–439MathSciNetGoogle Scholar
  3. [3]
    Karzel, H., and Kist, G.: Determination of all near-vector spaces with protective and affine fibrations. J. Geometry 23 (1984), 124–127MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Karzel, H., Kroll, H.-J., and SÖrensen, K.: Invariante Gruppenpartitionen und Doppelräume. J. Reine Angew. Math. 262/263 (1973), 153–157Google Scholar
  5. [5]
    Planta, S.: On automorphisms for some fibered incidence groups. J. Geometry, 30 (1987)Google Scholar
  6. [6]
    Pieper, I.: Zur Darstellung zweiseitiger affiner Inzidenz-gruppen. Abh. Math. Sem. Univ. Hamburg, 35 (1970), 121–130MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1987

Authors and Affiliations

  • Silvia Pianta
    • 1
  1. 1.Dipartimento di MatematicaUniversità CattolicaBresciaItaly

Personalised recommendations