Advertisement

Results in Mathematics

, Volume 12, Issue 1–2, pp 222–240 | Cite as

Projective Barbilian Spaces I

  • Ferdinand D. Veldkamp
Article

Abstract

An axiomatic description of projective spaces of arbitrary finite dimension over rings of stable rank 2 is given, and homomorphisms between such spaces are described.

Keywords

Projective Space Plane Case Neighbor Relation Stable Rank Independent Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    R. Baer, Linear Algebra and Projective Geometry. Academic Press, New York 1952.MATHGoogle Scholar
  2. 2.
    D. Barbilian, Zur Axiomatik der projektiven ebenen Ringgeometrien.I, Jahresbericht D.M.V. 50 (1940), 179–229; II, Jahresbericht D.M.V. 51 (1941), 34-76.MathSciNetGoogle Scholar
  3. 3.
    F. Bingen, Géométrie projective sur un auneau semiprimaire. Acad. Roy. Belg., Bull. Cl. Sci. (5) 52 (1966), 13–24.MathSciNetMATHGoogle Scholar
  4. 4.
    G. Birkhoff, Latice Theory. Amer. Math. Soc. Coll. Publ. 25. New York, 1948 (2nd ed.)Google Scholar
  5. 5.
    M. Esser, Self-dual Postulates for n-dimensional Geometry. Duke Math. J. 18 (1951), 475–479.MathSciNetCrossRefGoogle Scholar
  6. 6.
    J.C. Ferrar and F.D. Veldkamp, Neighbor-preserving Homomorphisms between Projective Ring Planes. Geometriae Dedicata 18 (1985), 11–33.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    J.C. Ferrar and F.D. Veldkamp, Admissible Subrings Revisited. To appear in Geometriae Dedicata.Google Scholar
  8. 8.
    R. Fritsch und A. Prestel, Bewertungsfortsetzungen und nicht-injektive Kollineationen. Geometriae Dedicata 13 (1982), 107–111.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. Hjelmslev, Einleitung in die allgemeine Kongruenzlehre. Danske Vid. Selsk., Mat.-Fys. Medd. 8, nr. 11 (1929); 10, nr.1 (1929); 19, nr. 12 (1942); 22, nr. 6 and nr. 13 (1945); 25, nr. 10 (1949).Google Scholar
  10. 10.
    W. Klingenberg, Projektive und affine Ebenen mit Nachbarelementen. Math. Z. 60 (1954), 384–406.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    W. Klingenberg, Euklidische Ebenen mit Nachbarelementen. Math. Z. 61 (1954), 1–25.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    W. Klingenberg, Desarguesche Ebenen mit Nachbarelementen. Abh. Math. Sem. Univ. Hamburg 20 (1955), 97–111.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    W. Klingenberg, Projektive Geometrien mit Homomorphismus. Math. Ann. 132 (1956), 180–200.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    F. Machala, Homomorphismen projektiver Räume mit Homomorphismus. Czech. Math. J. 25 (100) (1975), 454–474.MathSciNetGoogle Scholar
  15. 15.
    F.D. Veldkamp, Projective Planes over Rings of Stable Rank 2. Geometviae Dedicata 11 (1981), 285–308.MathSciNetMATHGoogle Scholar
  16. 16.
    F.D. Veldkamp, Projective Ring Planes: Some Special Cases. In: Atti del Conv&gno “Geometria combinatovia e di incidenza: fondamenti e applicazioni”, La Mendola 1982. Rendiconti del Seminario Matematico di Brescia 7 (1984), 609–615.MathSciNetGoogle Scholar
  17. 17.
    F.D. Veldkamp, Distant-preserving Homomorphisms between Projective Ring Planes. Proc. Kon. Ned. Akad. van Wetensch. A 88 (= Indigationes Math. 47) (1985), 443-453.Google Scholar
  18. 18.
    F.D. Veldkamp, Incidence-preserving Mappings between Projective Ring Planes. Proc. Kon. Ned. Akad. van Wetensch. A 88 (= Indigationes Math. 47) (1985), 455-459.Google Scholar
  19. 19.
    F.D. Veldkamp, Projective Ring Planes and Their Homomorphisms. In: R Kaya et al. (eds.), Rings and Geometry, pp. 289-350. D. Reidel Company, Dordrecht/Boston, 1985. (Proc. Nato Adv. Study Inst., Istanbul 1984).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1987

Authors and Affiliations

  • Ferdinand D. Veldkamp
    • 1
  1. 1.Mathematisch Instituut R.U.U.TA UtrechtThe Netherlands

Personalised recommendations