Results in Mathematics

, Volume 10, Issue 1–2, pp 143–146 | Cite as

On the Epstein Univalence Criterion

  • Ch Pommerenke


Unit Disk Additional Assumption Univalent Function Hyperbolic Space Quasiconformal Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. reine angew. Math. 255, 23–43 (1972)MathSciNetMATHGoogle Scholar
  2. [2]
    C.L. Epstein, The hyperbolic Gauss map and quasiconformal reflections, preprint 1985Google Scholar
  3. [3]
    C.L. Epstein, Univalence criteria and surfaces in hyperbolic space, preprint 1985Google Scholar
  4. [4]
    Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55, 545–551 (1949)MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    CH. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen 1975Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1986

Authors and Affiliations

  • Ch Pommerenke
    • 1
  1. 1.Fachbereich MathematikTechnische UniversitätBerlin 12

Personalised recommendations