Advertisement

Results in Mathematics

, Volume 10, Issue 1–2, pp 25–39 | Cite as

Optimale Kontrollprobleme für elliptische Systeme vom Beltrami und vom Douglis Typ

  • Heinrich Begehr
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Begehr, H. Boundary value problems for systems with Cauchy-Riemannian main part. Complex Analysis-Fifth Romanian-Finnish Seminar Bucharest 1981. Lecture Notes in Math. 1014, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983, 265–279.Google Scholar
  2. [2]
    Begehr, H. Remark on Hilbert’s boundary value problem for Beltrami systems. Proc. Roy. Soc. Edinburgh 98A (1984), 305–310.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Begehr, H. — Hile, G.N. Nonlinear Riemann boundary value problems for a nonlinear elliptic system in the plane. Math. Z. 179 (1982), 241–261.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Begehr, H.- Hile, G.N. Riemann boundary value problems for nonlinear elliptic systems. Complex Variables 1 (1983), 239–261.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Begehr, H. - Hsiao, G.C. The Hilbert boundary value problem for nonlinear elliptic systems. Proc. Roy. Soc. Edinburgh 94A (1983), 97–112.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Begehr, H. — Hsiao, G.C. A priori estimates for elliptic systems. Zeitschrift für Analysis und Anwendungen. Erscheint 1987.Google Scholar
  7. [7]
    Bojarski, B. Subsonic flow of compressible fluid. Archiwum Mechaniki Stosowanej 4,18 (1966), 497–519.MathSciNetGoogle Scholar
  8. [8]
    Tutschke, W. Ein Optimalitätskritrium für Lösungen des Dirichletproblems bei elliptischen Systemen erster Ordnung mit Parameterfunktionen. Beiträge zur Analysis 12 (1978), 19–27.MathSciNetGoogle Scholar
  9. [9]
    Vinogradov, V.S. On the estimates for solutions of boundary value problems for linear systems of elliptic equations. Dokl. Akad. Nauk SSSR 121 (1958), 399–402 (Russisch).MATHGoogle Scholar
  10. [10]
    v. Wolfersdorf, L. On some optimal control problems for linear elliptic systems in the plane. Beiträge zur Analysis 17 (1981), 95–98.Google Scholar
  11. [11]
    v. Wolfersdorf, L. Optimal control with semilinear first order complex differential equation of I.N. Vekua’s type. Appl. Anal. 11 (1981), 259–277.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1986

Authors and Affiliations

  • Heinrich Begehr
    • 1
  1. 1.I. Mathematisches Institutder Freien Universität BerlinBerlin 33

Personalised recommendations