Advertisement

Results in Mathematics

, Volume 28, Issue 3–4, pp 214–223 | Cite as

The Chen-Type of the Spiral Surfaces

  • Christos Baikoussis
  • Leopold Verstraelen
Article

Abstract

We show that a spiral surface M in E3 is of finite type if and only if M is minimal Also, the plane is the only spiral surface in E3 whose the Gauss map G is of finite type, or satisfies the condition ΔG = ΛG, where Λ ∈ R3×3.

AMS Classification

53C40 58E20 

Keywords

spiral surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baikoussis, Ch., Blair, D.E.: On the Gauss map of ruled surfaces, Glasgow Math. Journ., 34 (1992), 355–359.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Baikoussis, Ch., Chen, B.-Y. and Verstraelen, L.: Surfaces with finite type Gauss maps, Geometry and Topology of Submanifolds, IV (1991), 214–216, World Scientific Publishing Co., Singapore.Google Scholar
  3. [3]
    Baikoussis, Ch., Chen, B.-Y. and Verstraelen, L.: Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16 (1993), 341–349.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Baikoussis, Ch., Defever, F., Embrechts, P., Verstraelen, L.: On the Gauss map of the cyclides of Dupin, Soochow J. Math. 19 (1993), 417–428.MathSciNetMATHGoogle Scholar
  5. [5]
    Baikoussis, Ch., Defever, F, Koufogiorgos, Th., Verstraelen, L.: Finite type immersions of flat tori into Euclidean spaces, preprint.Google Scholar
  6. [6]
    Baikoussis, Ch., Verstraelen, L.: On the Gauss map of translation surfaces, Rendiconti del Seminario di Messina, Serie II, in print.Google Scholar
  7. [7]
    Baikoussis, Ch., Verstraelen, L.: On the Gauss map of helicoidal surfaces, Rendiconti del Seminario di Messina, Serie II, in print.Google Scholar
  8. [8]
    Chen, B.-Y.: Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.Google Scholar
  9. [9]
    Chen, B.-Y.: Finite type submanifolds and Generalizations, University of Rome, Rome, 1985.MATHGoogle Scholar
  10. [10]
    Chen, B.-Y.: Surfaces of finite type in Euclidean 3-space, Bull. Soc. Math. Belg. Ser B 39 (1987), 243–254.MathSciNetMATHGoogle Scholar
  11. [11]
    Chen, B.-Y.: Null 2-type surfaces in E3 are circular cylinders, Kodai Math. J. 11 (1988), 295–299.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169–188.MathSciNetMATHGoogle Scholar
  13. [13]
    Chen, B.-Y., Deprez, J, Dillen, F., Verstraelen, L., Vrancken, L.: Curves of finite type, Geometry and Topology of Submanifolds II, (1990), 76–100.Google Scholar
  14. [14]
    Chen, B.-Y., Dillen, F.; Quadrics of finite type, J. Geom. 38 (1990), 16–22.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Chen, B.-Y., Dillen, F., Verstraelen, L. and Vrancken, L.: Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), 447–453.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Chen, B.-Y., Ishikawa, S.: On classification of some surfaces of revolution of finete type, Tsukuba J. Math. 17 (1993), 287–298.MathSciNetMATHGoogle Scholar
  17. [17]
    Chen, B.-Y., Piccini, P.: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), 161–186.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Defever, F., Deszcz, R., Verstraelen, L.: The compact cyclides of Dupin and a conjecture of B.-Y. Chen, J. Geom. 46 (1993), 33–38.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Defever, F., Deszcz, R., Verstraelen, L.: The Chen-type of the non-compact cyclides of Dupin, Glasgow Math. J., in print.Google Scholar
  20. [20]
    Dillen, F., Pas, J., Verstraelen, L.: On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica 18 (1990), 239–246.MathSciNetMATHGoogle Scholar
  21. [21]
    Dillen, F., Pas, J., Verstraelen, L.: On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), 10–21.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Garay, O.: Finite type cones shaped on spherical submanifolds, Proc. Amer. Math. Soc. 104 (1988), 868–870.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Garay, O.: On a certain class of finite type surfaces of revolution, Kodai Math. Journ. 11 (1988), 25–31.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Garay, O., Verstraelen, L.: On submanifolds of finite Chen type and some related topic, preprint.Google Scholar
  25. [25]
    Ruh, E.A., Vilms, J.: The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569–573.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Takahashi, T.: Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    Verstraelen, L.: On submanifolds of finite Chen type and of restricted type, Results in Math. 20 (1991), 744–755.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Wunderlich, W.: Darstellende Geometrie der SpiralfläChen, Monatsh. Math. Phys. 46 (1938), 248–265.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1995

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IoanninaIoanninaGreece
  2. 2.Departement WiskundeCelestijnenlaan 200 BHeverleeBelgium

Personalised recommendations