Advertisement

Results in Mathematics

, Volume 29, Issue 3–4, pp 305–310 | Cite as

On the stability of Hosszú’s functional equation

  • László Losonczi
Article

Abstract

Two stability results are proved. The first one states that Hosszú’s functional equation
$$f(x+y-xy)+f(xy)=f(x)-f(y)=0\ \ \ \ \ (x,y \in \rm R)$$
is stable. The second is a local stability theorem for additive functions in a Banach space setting.

1991 Mathematics Subject Classification

39B72 47H15 

Key Words

Key words and phrases Functional equations Hyers-Ulam stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Blanusa, The functional equation ƒ(xy) +ƒ(x + y - xy) = ƒ(x) + ƒ(y), Aequationes Math. 5 (1970), 63–67.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    C. Borelli, On Hyers- Ulam stability of Hosszú’s functional equation, Results in Mathematics 26 (1994), 221–224.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Z. Daróczy, Über die Funktionalgleichung ƒ(xy) + ƒ(x + y - xy) = ƒ(x) + ƒ(y), Publ. Math. Debrecen 16 (1969), 129–132.MathSciNetMATHGoogle Scholar
  4. [4]
    Z. Daróczy, On the general solution of the functional equation ƒ(x + y - xy) + ƒ(xy) = ƒ(x) + ƒ(y), Aequationes Math. 6 (1971), 130–132.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    T. M. K. Davison, The complete solution of Hosszú’s functional equation over a field, Aequationes Math. 11 (1974), 273–276.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    I. Fenyő, On the general solution of a functional equation in the domain of distributions, Aequationes Math. 3 (1969), 236–246.MathSciNetCrossRefGoogle Scholar
  7. [7]
    D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.MathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Kuczma, An introduction to the theory of functional equations and inequalities, Pañstwowe Wydawnictwo Naukowe Uniwersytet ~Slcaski, Warszawa-Kraków-Katowice, 1985.MATHGoogle Scholar
  9. [9]
    K. Lajkó, Applications of extensions of additive functions, Aequationes Math. 11 (1974), 68–76.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    F. Skof, Sull’approssimazione delle applicazioni localmente δ-additive, Atti della Accademia delle Sci. di Torino I 117 (1983), 377–389.MathSciNetMATHGoogle Scholar
  11. [11]
    F. Skof, Proprietà locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano 53 (1983), 113–129.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    H. ~Swiatak, On the functional equation ƒ(x + y - xy) + ƒ(xy) = ƒ(x) + ƒ(y), Mat. Vestnik 5 (1968), 177–182.MathSciNetGoogle Scholar
  13. [13]
    J. Tabor, Hosszú’s functional equation on the unit interval is not stable, Publ. Math. Debrecen (submitted).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1996

Authors and Affiliations

  1. 1.Department of MathematicsKuwait UniversitySafatKuwait

Personalised recommendations