Results in Mathematics

, Volume 29, Issue 1–2, pp 16–41 | Cite as

Kloosterman Sums and their Applications: A Review

  • Norman E. Hurt


The article reviews recent work in quantum chaos related to quantum mechanical systems which arise in the study of analytic number theory. The central themes of the review are Kloosterman sums, the Selberg-Kloosterman zeta function, the Kuznecov trace formula, the Sato-Tate distribution, and the appearance of Hecke operators in the study of quantum chaos.

1991 Mathematics Subject Classification

11L05 11F72 11E45 58F20 58F25 


Kloosterman sums quantum chaos Selberg trace formula Hecke operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Aurich, E. B. Bogomolny, and F. Steiner, Periodic orbits on the regular hyperbolic octagon, Physica D48 (1991) 91–101.MathSciNetGoogle Scholar
  2. R. Aurich, J. Bolte, C. Matthies, M. Sieber and F. Steiner, Crossing the entropy barrier of dynamical zeta functions, Physica D63 (1993) 71–86.MathSciNetGoogle Scholar
  3. R. Aurich, J. Bolte and F. Steiner, Universal signatures of quantum chaos, Phys. Rev. Lett. 73 (1994) 1356–1359.CrossRefGoogle Scholar
  4. R. Aurich and J. Marklof, Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard, DESY 95-009 (1995).Google Scholar
  5. R. Aurich, C. Matthies, M. Sieber, and F. Steiner, A new rule for quantizing chaos (preprint, 1991); Novel rule for quantizing chaos, Phys. Rev. Lett. 68 (1992) 1629–1632.MathSciNetMATHCrossRefGoogle Scholar
  6. R. Aurich and F. Steiner, Periodic orbits of a strongly chaotic system, Physica D32 (1988) 451–460.MathSciNetGoogle Scholar
  7. R. Aurich and F. Steiner, Periodic-orbit sum rules for the Hadamard-Gutzwiller model, Physica D39 (1989) 169–193.MathSciNetGoogle Scholar
  8. R. Aurich and F. Steiner, Energy-level statistics of the Hadamard-Gutzwiller ensemble, Physica D43 (1990) 155–180.MathSciNetGoogle Scholar
  9. R. Aurich and F. Steiner, Staircase functions, spectral rigidity, and a rule for quantizing chaos, Phys. Rev. A45 (1992) 583–592.MathSciNetGoogle Scholar
  10. N. L. Balazs and A. Voros, Chaos on the pseudosphere, Phys. Rep. 143 (1986) 109–240.MathSciNetCrossRefGoogle Scholar
  11. E. B. Bogomolny, B. Georgeot, M. J. Giannoni and C. Schmit, Chaotic billiards generated by arithmetic groups, Phys. Rev. Lett. 69 (1992) 1477–1480.MathSciNetMATHCrossRefGoogle Scholar
  12. E. B. Bogomolny, B. Georgeot, M. J. Giannoni and C. Schmit, Trace formulas for arithmetical systems, Phys. Rev. E47 (1993) R2217–R2220.MathSciNetGoogle Scholar
  13. E. Bogomolny, F. Leyvraz and C. Schmit, Distribution of eigenvalues for the modular group (preprint, 1995).Google Scholar
  14. J. Bolte, Some studies on arithmetical chaos in classical and quantum mechanics, Inter. J. Mod. Phys. B7 (1993) 4451–4553.MathSciNetCrossRefGoogle Scholar
  15. J. Bolte, Periodic orbits in arithmetical chaos on hyperbolic surfaces, Nonlin. 6 (1993) 935–951.MathSciNetMATHCrossRefGoogle Scholar
  16. J. Bolte and C. Grosche, Selberg trace formula for bordered Riemann surfaces: hyperbolic, elliptic and parabolic conjugacy classes and determinants of Maass-Laplacians, Comm. math. phys. 163 (1994) 217–244.MathSciNetMATHCrossRefGoogle Scholar
  17. J. Bolte and F. Steiner, The Selberg trace formula for bordered Riemann surfaces, Comm. math. phys. 156 (1993) 1–16.MathSciNetMATHCrossRefGoogle Scholar
  18. J. Bolte, G. Steil, and F. Steiner, Arithmetical chaos and violation of universality in energy level statistics, Phys. Rev. Lett. 69 (1992) 2188–2191.MathSciNetMATHCrossRefGoogle Scholar
  19. R. W. Bruggeman, Fourier coefficients of cups forms, Invent, math. 45 (1978) 1–18.MathSciNetMATHCrossRefGoogle Scholar
  20. D. Bump, W. Duke, J. Hoffstein, and H. Iwaniec, An estimate for the Hecke eigenvalues of Maass forms, Duke Math. J. Inter. Math. Res. Not. 4 (1992) 75–81.MathSciNetCrossRefGoogle Scholar
  21. A. Comtet, B. Georgeot and S. Ouvry, Trace formula for Riemann surfaces with magnetic field M. Degli Esposti, Classical and quantum equidistribution: an (easy) example, (thesis, Pennsylvania State University, 1994).Google Scholar
  22. M. Degli Esposti, S. Graffi and S. Isola, Classical limit of the quantized hyperbolic toral automorphism, Comm. Math. Phys. 167 (1995) 471–507.MathSciNetMATHCrossRefGoogle Scholar
  23. M. Degli Esposti, S. Graffi and S. Isola, Equidistribution of periodic orbits: an overview of classical vs quantum results, Lect. Notes Math. 1589 (1994) 65–91.MathSciNetCrossRefGoogle Scholar
  24. M. Degli Esposti and S. Isola, Distribution of closed orbits for linear automorphisms of tori(preprint 1994).Google Scholar
  25. P. Deligne, La conjecture de Weil 1, Publ. Math. 1HES 43 (1974) 273–307.MathSciNetGoogle Scholar
  26. P. Deligne, Application de la formule de traces aux sommes trigonometriques, LNM 569 (1977) 168–232.MathSciNetGoogle Scholar
  27. P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Ec. Norm. Sup. 7 (1974) 507–530.MathSciNetMATHGoogle Scholar
  28. J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent, math. 70 (1982) 219–288.MathSciNetMATHCrossRefGoogle Scholar
  29. M. Eisele and D. Mayer, Dynamical zeta functions for Artin’s billiard and the Venkov-Zograf factorization formula, (preprint, 1995).Google Scholar
  30. J. Elstrodt, F. Grunewald, and J. Mennicke, Kloosterman sums for Clifford algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces, Invent, math. 101 (1990) 641–685.MathSciNetMATHCrossRefGoogle Scholar
  31. J. D. Fay, Fourier coefficients of the resolvent for a Fuschsian group, J. f. reine ang. Math. 293/294 (1977) 143–203.MathSciNetGoogle Scholar
  32. S. Gelbart, Automorphic Forms on Adele Groups (Princeton University Press, Princeton, 1975).MATHGoogle Scholar
  33. I. M. Gel’fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions (W. B. Saunders, Philadelphia, 1969).Google Scholar
  34. D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent, math 71 (1983) 243–250.MathSciNetMATHCrossRefGoogle Scholar
  35. D. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976) 441–482.MathSciNetMATHCrossRefGoogle Scholar
  36. D. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. I, LNM 548; Vol. II, LNM 1001 (Springer, 1976, 1983).Google Scholar
  37. D. A. Hejhal, Eigenvalues of the Laplacian for PSL(2, Z): some new results and computational techniques, in International Symposium in Memory of Hua Loo-Keng”, Vol. 1 (Springer, 1991) 59–102.MathSciNetGoogle Scholar
  38. D. A. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, Mem. AMS 97 (1992).Google Scholar
  39. D. A. Hejhal, On the distribution of zeros of a certain class of Dirichlet series, Inter. Math. Res. Notes 4 (1992) 83–91.MathSciNetCrossRefGoogle Scholar
  40. D. A. Hejhal and S. Arno, On Fourier coefficients of Maass waveforms for PSL(2, Z), Math. Comp. 61 (1993) 245–267.MathSciNetMATHGoogle Scholar
  41. M. Huxley, Introduction to Kloostermania, in Banach Center Publications, 17 (ed., H. Iwaniec, Warsaw, 1985).Google Scholar
  42. H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984) 136–159.MathSciNetMATHGoogle Scholar
  43. H. Iwaniec, Promenade along modular forms and analytic number theory, in Topics in Analytic Number Theory, S. W. Graham and J. D. Vaaler, eds. (University of Texas Press, Austin, 1985) 221–303.Google Scholar
  44. H. Iwaniec, Selberg’s lower bound of the first eigenvalue for congruence groups, in Number theory, trace formulas, discrete groups, (ed., E. J. Aver, Academic Press, 1989) 371-375.Google Scholar
  45. D. Joyner, Distribution Theorems of L-functions (Pitnam-Wiley, New York, 1985).Google Scholar
  46. N. M. Katz, Gauss Sums, Kloosterman Sums and Monodromy Groups (Princeton University Press, Princeton, 1988).MATHGoogle Scholar
  47. H. D. Kloosterman, On the representation of numbers in the form ax 2 + by 2 + CZ2 + dt 2, Acta Math. 49 (1926) 407–464.MathSciNetCrossRefGoogle Scholar
  48. A. Knapp, Elliptic Curves (Princeton University Press, Princeton, 1992).MATHGoogle Scholar
  49. V. Kuznecov, Petersson conjecture for forms of weight zero and the Linnik conjecture, preprint (1977).Google Scholar
  50. N.. Kuznecov, Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture, Sums of Kloosterman sums, Math. USSR Sbornik 39 (1981) 299–342.CrossRefGoogle Scholar
  51. N. V. Kuznecov, The distribution of norms of primitive hyperbolic classes of the modular group and asymptotic formulas for the eigenvalues…, Sov. Math. Dokl. 19 (1978) 1053–1056.Google Scholar
  52. R. P. Langlands, Problems in the theory of automorphic forms, LNM 170 (1970) 18–61.MathSciNetGoogle Scholar
  53. R. P. Langlands, On the functional equations satisfied by Eisenstein series, LNM 544 (1976).Google Scholar
  54. D. H. Lehmer, Note on the distribution of Ramanujan’s tau function, Math. Comp. 24 (1970) 741–743.MathSciNetMATHGoogle Scholar
  55. Y. V. Linnik, Additive problems and eigenvalues of the modular operators, Proc. Inter. Congre. Math. (1962) 270-284.Google Scholar
  56. G. Lion and M. Vergne, The Weil Representation, Maslov Index and Theta Series (Birkhauser, Boston, 1980).Google Scholar
  57. W. Luo, On the nonvanishing of Rankin-Selberg L-functions, Duke Math. J. 69 (1993) 411–425.MathSciNetMATHCrossRefGoogle Scholar
  58. W. Luo, Zeros of Hecke L-functions associated with cusp forms, Acta Arith. LXXI (1995) 139–158.Google Scholar
  59. W. Luo, Z. Rudnick and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Func. Anal. 5 (1995) 387–401.MathSciNetMATHCrossRefGoogle Scholar
  60. W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on PSL,2(Z)H2, Publ. IHES (to appear, 1994).Google Scholar
  61. H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949)141–183.MathSciNetMATHCrossRefGoogle Scholar
  62. J. Marklof, On multiplicities in length spectra of arithmetic hyperbolic three-orbifolds, DESY 95-055 (1995).Google Scholar
  63. C. Matthies and F. Steiner, Selberg’s zeta function and the quantization of chaos, Phys. Rev. A44 (1991) R7877–R7880.MathSciNetGoogle Scholar
  64. M. R. Murty, On the estimation of eigenvalues of Hecke operators, Rocky Mt. J. Math. 5 (1985) 521–533.CrossRefGoogle Scholar
  65. H. Ninnemann, Gutzwiller’s octagon and the triangular billiard T*(2, 3, 8) as models for the quantization of chaotic systems by Selberg’s formula (preprint, 1995).Google Scholar
  66. H. Petersson, Über die Entwicklungkoeffizienten der automorphen Formen, Acta Math. 58 (1932) 169–215.MathSciNetCrossRefGoogle Scholar
  67. T. Pignataro, Hausdorff dimension, spectral theory and applications to the quantization of geodesic flows on surfaces of constant negative curvature, (thesis, Princeton University, 1984).Google Scholar
  68. N. V. Proskurin, The summation formulas lor general Kloosterman sums, Zap. Naucn. Sem Leningrad Otdel. Mat. Inst. Steklov 82 (1979) 103–135; J. Sov. Math.MathSciNetMATHGoogle Scholar
  69. B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974) 996–1000.MathSciNetMATHCrossRefGoogle Scholar
  70. W. Roelcke, Über die Wellengleichung bei Grenzkreisgruppen erster Art, Sitz. Ber. Heidi. Akad. der Wiss. (1956) 4.Google Scholar
  71. Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, (preprint, 1995).Google Scholar
  72. H. Salié, Über die Kloostermanschen Summen S(u,v;q), Math. Z. 34 (1931) 91–109.CrossRefGoogle Scholar
  73. P. Sarnak, The arithmetic and geometry of some hyperbolic manifolds, Acta Math. 151 (1983) 253–295.MathSciNetMATHCrossRefGoogle Scholar
  74. P. Sarnak, Arithmetic quantum chaos, Schur Lectures, Tel Aviv (1992).Google Scholar
  75. P. Sarnak, Selberg’s eigenvalue conjecture, Notices AMS 42 (1995) 1272–1277.MathSciNetMATHGoogle Scholar
  76. I. Sataka, Spherical functions and Ramanujan conjecture, Proc. Symp. in Pure Math. IX (1966) 258–264.CrossRefGoogle Scholar
  77. C. Schmit, Quantum and classical properties of some billiards on the hyperbolic plane, in Chaos and Quantum Physics, Proc. of Les Houches Summer School, LI1, ed. M. J. Giannoni, A. Voros, and J. Zinn-Justin (North Holland, New York, 1991) 333–369.Google Scholar
  78. C. Schmit, Triangular billiards on the hyperbolic plane: spectral properties (preprint, IPNO/TH 91-68, Orsay).Google Scholar
  79. C. Schmit and C. Jacquemin, Classical quantization of a compact billiard on the pseudo-sphere (preprint, IPNO/TH 91-65, Orsay).Google Scholar
  80. A. Selberg, Harmonic analysis and discontinuous groups in symmetric Riemannian spaces with applications to Dirichiefs series, J. Indian Math. Soc. 20 (1956) 41–87.MathSciNetGoogle Scholar
  81. A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symposia in Pure Math. VIII (1965) 1–15.MathSciNetCrossRefGoogle Scholar
  82. J.-P. Serre, Abelian 1-Adic Representations and Elliptic Curves (Benjamin, New York, 1968).Google Scholar
  83. F. Shahidi, Langlands’ functoriality conjecture, in Proc. of the 20th Annual Iranian Math. Conf., March 1989 (University of Tehran Press, 1991) 647-665.Google Scholar
  84. F. Shahidi, Symmetric power L-functions for GL(2), preprint, 1992.Google Scholar
  85. H. Shimizu, On traces of Hecke operators, J. Fac. Sci. Univ. Tokyo, Sect. 1, 10 (1963) 1–19.MATHGoogle Scholar
  86. G. Shimura, Introduction to the arithmetic theory of automorphic functions, (Princeton University Press, Princeton, 1971).MATHGoogle Scholar
  87. G. Steil, Über das diskrete energiespektrum des artinschen billiards, Diploma Thesis, University of Hamburg, 1992.Google Scholar
  88. F. Steiner, in Universität Hamburg 1994: Schlaglichter der Forschung zum 75. Jahrestag, (ed. R. Ansorge, Hamburg, 1994) 543.Google Scholar
  89. K. Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975) 600–612.MathSciNetMATHCrossRefGoogle Scholar
  90. K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977) 91–106.MathSciNetMATHCrossRefGoogle Scholar
  91. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications (Springer-Verlag, Berlin, 1985).MATHCrossRefGoogle Scholar
  92. A. B. Venkov, Selberg’s trace formula for the Hecke operator generated by an involution and the eigenvalues of the Laplace-Beltrami operator on the fundamental domain of the modular group PSL(2, Z), lzv. Akad. Nauk SSSR Ser. Mat. 42 (1978) 484–499; Math. USSR lzv. 42 (1978) 448.MATHGoogle Scholar
  93. A. B. Venkov, Spectral theory of automorphic functions, Proc. Steklov Inst. of Math. 153 (1981).Google Scholar
  94. A. B. Venkov, Spectral Theory of Automorphic Functions and its Applications (Kluwer, Dordrecht, 1990).MATHCrossRefGoogle Scholar
  95. M. F. Vignéras, Quaternions, Lecture Notes in Math. 800 (1980).Google Scholar
  96. M.-F. Vignéras, Quelques remarques sur la conjecture λ1 ≥1/4, (preprint, 1983).Google Scholar
  97. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. USA 34 (1948) 204–207.MathSciNetMATHCrossRefGoogle Scholar
  98. T. Yamada, On the distribution of the norms of the hyperbolic transformations, Osaka J. Math. 3 (1966) 29–37.MathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 1996

Authors and Affiliations

  • Norman E. Hurt
    • 1
  1. 1.Zeta Associates, Inc.FairfaxUSA

Personalised recommendations