Results in Mathematics

, Volume 31, Issue 1–2, pp 105–114 | Cite as

Asymptotic Growth of Hermite Series and an Application to the Theory of the Riemann Zeta Function

  • Markus Grawe

AMS classification

33C45 41A60 42C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ASK]
    R.Askey and S.Wainger: “Mean convergence of expansions in Laguerre- and Hermite-series”, Am. Journ. of math., 87, 1965.Google Scholar
  2. [CHA]
    K.Chandrasekharan: “Classical Fourier Transforms”, Berlin, 1989.Google Scholar
  3. [ERD1]
    A.Erdélyi: “Asymptotic solutions of differential equations with transition points or singularities”, Journ. of math. phys., Vol.1, Nr.1, 1960.Google Scholar
  4. [ERD2]
    A.Erdélyi et al.: “Higher transcendental functions”, New York, 1953.Google Scholar
  5. [GRA]
    M. Grawe: “Asymptotik der Hermite’schen Orthonormalfunktionen und ihre Anwendung auf das Wachstum von Hermite-Reihen”, Diplomarbeit, Bonn, 1996.Google Scholar
  6. [JEF]
    H. and B. Jeffreys: “Methods of mathematical physics”, Cambridge, 1956.Google Scholar
  7. [LEB]
    N.N.Lebedew: “Spezielle Funktionen und ihre Anwendung”, Zürich, 1973.Google Scholar
  8. [MAR]
    C.Markett: “Norm estimates for (C,δ) means of Hermite expansions”, Acta Math. Hung. 43 (3–4), 1984.Google Scholar
  9. [NIK]
    A.F.Nikiforov and V.B.Uvarov: “Special functions of mathematical physics”, Basel, 1988.Google Scholar
  10. [SZE]
    G.Szegö: “Orthogonal polynomials”, New York, 1939.Google Scholar
  11. [TIT]
    E.C.Titchmarsh: “The theory of the Riemann Zeta-Function”, Oxford, 1951.Google Scholar
  12. [WAT]
    G.N.Watson: “A treatise on the theory of Bessel functions”, Cambridge, 1922.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1997

Authors and Affiliations

  • Markus Grawe
    • 1
  1. 1.Kirchentellinsfurt

Personalised recommendations