Advertisement

Results in Mathematics

, Volume 32, Issue 3–4, pp 352–390 | Cite as

Zu Kepplers Conchoid-Konstruktion

  • Walter Johannes Schempp
Historical eassy

Abstract

The physical models introduced by Johannes Keppler into astronomy were not only much more accurate than their predecessors, they were innovative theoretically to such an extent that they stand quite alone. The conchoid construction he presented in his ”Astronomia Nova” (1609) seems to have almost escaped notice in the literature. A misguided and sometimes unwitting interpretation of Keppler’s physical astronomy as a precursor to Newton’s celestial mechanics has impeded any fair analysis of it. Keppler’s physics is a physics of phases and frequencies, as Newton’s is a physics of accelerations. The purpose of this paper is to outline the impact of Keppler’s conchoid construction. His dynamical approach which is a profoundly original filter bank construction has found recently an unexpected revelation in magnetic resonance tomography.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    J. Alberts, Keplers Traum. Klett-Cotta, Stuttgart 1989Google Scholar
  2. [2]
    A. Beer, P. Beer, Kepler — Four Hundred Years, Proceedings of Conferences held in Honour of Johannes Kepler. Vistas in Astronomy, Vol. 18. Pergamon, Oxford, New York 1975Google Scholar
  3. [3]
    R.P. Boas,Jr., Summation formulas and band-limited signals. Tôhoku Math. J. 24, 121–125 (1972)MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    W.G. Bradley, Jr., D.J. Atkinson, D.-Y. Chen, Using high-performance gradients. In: Advanced MR Imaging Techniques, W.G. Bradley, Jr., G.M. Bydder, editors, pp. 31–62, Martin Dunitz, London 1997Google Scholar
  5. [5]
    B. Burke Hubbard, The World According to Wavelets. A.K. Peters, Wellesley, MS 1996Google Scholar
  6. [6]
    C.-N. Chen, D.I. Hoult, Biomedical Magnetic Resonance Technology. Adam Hilger, Bristol, New York 1989Google Scholar
  7. [7]
    M.S. Cohen, R.M. Weisskof F, Ultra-fast imaging. Magn. Reson. Imaging 9, 1–37 (1991)Google Scholar
  8. [8]
    E.R. Davies, Electronics, Noise, and Signal Recovery. London, San Diego, New York 1993Google Scholar
  9. [9]
    R.L. DeLaPaz, Echo-planar imaging. In: Current Review of MRI, J. Beltran, editor, pp. 51–61, Current Medicine, Philadelphia 1995Google Scholar
  10. [10]
    A.M. DeSchepper, P.M. Parizel, F. Ramon, L.De Beuckeleer, and J.E. Vandevenne, editors, Imaging of Soft Tissue Tumors. Springer-Verlag, Berlin, Heidelberg, New York 1997Google Scholar
  11. [11]
    D. Deutsch, Die Physik der Welterkenntnis: Auf dem Weg zum universellen Verstehen. Birkhäuser Verlag, Basel, Boston, Berlin 1996Google Scholar
  12. [12]
    G. Doebel, Johannes Keppler: Er veränderte das Weltbild. Verlag Styria, Graz, Wien, Köln 1983Google Scholar
  13. [13]
    R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. I. Addison-Wesley, Redwood City, Menlo Park, Reading 1989Google Scholar
  14. [14]
    J. Gaa, S. Saini, Echo-planar magnetic resonance imaging of the abdomen. In: Current Review of MRI, J. Beltran, editor, pp. 266–272, Current Medicine, Philadelphia 1995Google Scholar
  15. [15]
    P. Gabriel, Matrizen, Geometrie, Lineare Algebra. Birkhäuser, Basel, Boston, Berlin 1996MATHCrossRefGoogle Scholar
  16. [16]
    D.G. Gadian, NMR and its Applications to Living Systems. Second edition, Oxford University Press, Oxford, New York, Tokyo 1995Google Scholar
  17. [17]
    R.J. Gillies, editor, NMR in Physiology and Biomedicine. Academic Press, San Diego, New York, Boston 1994Google Scholar
  18. [18]
    E.H. Gombrich, Symmetrie, Wahrnehmung und künstlerische Gestaltung. In: Symmetrie in Geistes- und Naturwissenschaft, herausgegeben von R. Wille, pp. 94–119, Springer-Verlag, Berlin, Heidelberg, New York 1988CrossRefGoogle Scholar
  19. [19]
    C.B. Grossman, Magnetic Resonance Imaging and Computed Tomography of the Head and Spine. Second edition, Williams & Wilkins, Baltimore, Philadelphia, London 1996Google Scholar
  20. [20]
    P. Horowitz, W. Hill, The Art of Electronics. Second edition, Cambridge University Press, Cambridge 1989Google Scholar
  21. [21]
    A. Koestler, The Sleepwalkers. The Universal Library, Grosset and Dunlap, New York 1963Google Scholar
  22. [22]
    J. Mattson, M. Simon, The Pioneers of NMR and Magnetic Resonance in Medicine: The Story of MRI. Bar-Ilan University Press, Ramat Gan 1996Google Scholar
  23. [23]
    C. Mead, L. Conway, Introduction to VLSI Systems. Addison-Wesley Publishing Company, Reading, Menlo Park, London 1980Google Scholar
  24. [24]
    C.C. Moore, J.A. Wolf, Square integrable representations of nilpotent groups. Trans. Amer. Math. Soc. 185, 445–462 (1973)MathSciNetCrossRefGoogle Scholar
  25. [25]
    M.E. Moseley, G.H. Glover, Functional MR imaging: Capabilities and limitations. In: Functional Neuroimaging, B.P. Drayer, editor, Neuroimaging Clinics of North America Vol. 5, No. 2, 161–191 (1995)Google Scholar
  26. [26]
    O. Neugebauer, The Exact Sciences in Antiquity. Princeton University Press, Princeton, NJ 1952MATHGoogle Scholar
  27. [27]
    V.H. Patel, L. Friedman, MRI of the Brain: Normal Anatomy and Normal Variants. W.B. Saunders Company, Philadelphia, London, Toronto 1997Google Scholar
  28. [28]
    B. Pourciau, Reading the master: Newton and the birth of celestial mechanics. Amer. Math. Monthly 104, 1–19 (1997)MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    W.J. Schempp: Magnetic Resonance Imaging: Mathematical Foundations and Applications. J. Wiley & Sons, New York (in press)Google Scholar
  30. [30]
    J. Schwitter, H. Sakuma, M. Saeed, M.F. Wendland, and C.B. Higgins, Very fast cardiac imaging. In: Cardiac MR Imaging, L.M. Boxt, editor, MRI Clinics of North America Vol. 4, No. 2, 419–432 (1996)Google Scholar
  31. [31]
    C.E. Shannon, W. Weaver, The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL 1964Google Scholar
  32. [32]
    B. Stephenson, Kepler’s Physical Astronomy. Princeton University Press, Princeton, NJ 1987MATHCrossRefGoogle Scholar
  33. [33]
    C.L. Truwit, T.E. Lempert, High Resolution Atlas of Cranial Neuroanatomy. Williams & and Wilkins, Baltimore, Philadelphia, Hong Kong 1994Google Scholar
  34. [34]
    D. Uhlenbrock, MRT und MRA des Kopfes: Indikationsstellung, Wahl der Untersuchungsparameter, Befundinterpretation. Georg Thieme Verlag, Stuttgart, New York 1996Google Scholar
  35. [35]
    G.K. von Schulthess, Echoplanar imaging. In: Magnetic Resonance Imaging of the Body, third edition, C.B. Higgins, H. Hricak, and C.A. Helms, editors, pp. 87–100, Lippincott-Raven Publishers, Philadelphia, New York 1997Google Scholar
  36. [36]
    P.P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs, NJ 1993Google Scholar
  37. [37]
    M.S. van der Knaap, J. Valk, Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. 2. Auflage, Springer-Verlag, Berlin, Heidelberg, New York 1995Google Scholar
  38. [38]
    D.M. Weber, Echo planar imaging. In: Progressi in RM, Note di Tecnica, a Cura di M. Cammisa e T. Scarabino, pp. 47-66, Guido Gnocchi editore, Napoli 1995Google Scholar
  39. [39]
    R.M. Weisskoff, M.S. Cohen, Echo planar imaging: Technology and techniques. In: Advanced MR Imaging Techniques, W.G. Bradley, Jr., G.M. Bydder, editors, pp. 63–97, Martin Dunitz, London 1997Google Scholar
  40. [40]
    H. Weyl, Symmetrie. Birkhäuser Verlag, Basel, Stuttgart 1955; Englische Ausgabe: Symmetry. Princeton University Press, Princeton, NJ 1989Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1997

Authors and Affiliations

  1. 1.Lehrstuhl für Mathematik I Universität SiegenSiegenDeutschland

Personalised recommendations