Results in Mathematics

, Volume 33, Issue 3–4, pp 364–373 | Cite as

On Strong Isotopy of Dickson Semifields and Geometric Implications

  • Bianca Spille
  • Irene Pieper-scier
Research article


Similarity of certain abelian collineation groups of a translation plane corresponds to strong isotopy of multiplication variations of a commutative semifield. Strong isotopy of Dickson semifields and their multiplication variations is characterized. The splitting of the isotopy class of a Dickson semifield over different types of basic fields (e. g. absolutely algebraic fields, number fields) into classes of strong isotopy is investigated. **

1991 Mathematics Subject Classification

17A35 51J99 17A36 51A40 


commutative division algebra Dickson semifield strong isotopism affine incidence group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Pieper-scier, Irene, “Über ebene affine Inzidenzgruppen”, Geom. Dedicata 22 (1987) 1–20.MathSciNetGoogle Scholar
  2. [2]
    Hughes, Daniel R. and Piper, Fred C, Projective planes, Springer, Berlin-Heidelberg-New York, 1973.MATHGoogle Scholar
  3. [3]
    Karzel, Helmut, “Affine Incidence Groups”, Rend. Sem. Mat. Brescia 7 (1984) 409–425.MathSciNetMATHGoogle Scholar
  4. [4]
    Kiechle, Hubert, “Bemerkungen zu einer Klasse kommutativer Inzidenzgruppen”, Res. Math. 18 (1990) 264–272.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Cohen, Stephen D. and Ganley, Michael J., “Commutative semifields, two dimensional over their middle nuclei”, J. Algebra 75 (1982) 373–385.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Dickson, Leonard E., “On commutative linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc. 7 (1906) 514–527.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Burmester, M. V. D., “On the commutative non-associative division algebras of even order of L. E. Dickson”, Rend. Math. 21 (1962) 143–166.MathSciNetMATHGoogle Scholar
  8. [8]
    Sandier, Reuben, “The collineation groups of some finite projective planes”, Portugal. Math. 21 (1962) 189–199.MathSciNetGoogle Scholar
  9. [9]
    Cohn, Paul M., Algebra Vol.2, John Wiley & Sons, London-New York-Sydney-Toronto, 1977.MATHGoogle Scholar
  10. [10]
    Marcus, Daniel A., Number Fields, Springer, Berlin-Heidelberg-New York, 1977.MATHCrossRefGoogle Scholar
  11. [11]
    Neukirch, Jürgen, Algebraische Zahlentheorie, Springer, Berlin-Heidelberg-New York, 1992.MATHGoogle Scholar

Copyright information

© Birkh/:auser Verlag, Basel 1999

Authors and Affiliations

  1. 1.Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)Berlin

Personalised recommendations