Advertisement

Results in Mathematics

, Volume 33, Issue 3–4, pp 364–373 | Cite as

On Strong Isotopy of Dickson Semifields and Geometric Implications

  • Bianca Spille
  • Irene Pieper-scier
Research article

Abstract

Similarity of certain abelian collineation groups of a translation plane corresponds to strong isotopy of multiplication variations of a commutative semifield. Strong isotopy of Dickson semifields and their multiplication variations is characterized. The splitting of the isotopy class of a Dickson semifield over different types of basic fields (e. g. absolutely algebraic fields, number fields) into classes of strong isotopy is investigated. **

1991 Mathematics Subject Classification

17A35 51J99 17A36 51A40 

En]Keywords

commutative division algebra Dickson semifield strong isotopism affine incidence group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pieper-scier, Irene, “Über ebene affine Inzidenzgruppen”, Geom. Dedicata 22 (1987) 1–20.MathSciNetGoogle Scholar
  2. [2]
    Hughes, Daniel R. and Piper, Fred C, Projective planes, Springer, Berlin-Heidelberg-New York, 1973.MATHGoogle Scholar
  3. [3]
    Karzel, Helmut, “Affine Incidence Groups”, Rend. Sem. Mat. Brescia 7 (1984) 409–425.MathSciNetMATHGoogle Scholar
  4. [4]
    Kiechle, Hubert, “Bemerkungen zu einer Klasse kommutativer Inzidenzgruppen”, Res. Math. 18 (1990) 264–272.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Cohen, Stephen D. and Ganley, Michael J., “Commutative semifields, two dimensional over their middle nuclei”, J. Algebra 75 (1982) 373–385.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Dickson, Leonard E., “On commutative linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc. 7 (1906) 514–527.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Burmester, M. V. D., “On the commutative non-associative division algebras of even order of L. E. Dickson”, Rend. Math. 21 (1962) 143–166.MathSciNetMATHGoogle Scholar
  8. [8]
    Sandier, Reuben, “The collineation groups of some finite projective planes”, Portugal. Math. 21 (1962) 189–199.MathSciNetGoogle Scholar
  9. [9]
    Cohn, Paul M., Algebra Vol.2, John Wiley & Sons, London-New York-Sydney-Toronto, 1977.MATHGoogle Scholar
  10. [10]
    Marcus, Daniel A., Number Fields, Springer, Berlin-Heidelberg-New York, 1977.MATHCrossRefGoogle Scholar
  11. [11]
    Neukirch, Jürgen, Algebraische Zahlentheorie, Springer, Berlin-Heidelberg-New York, 1992.MATHGoogle Scholar

Copyright information

© Birkh/:auser Verlag, Basel 1999

Authors and Affiliations

  1. 1.Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)Berlin

Personalised recommendations