Skip to main content
Log in

A Domain Integral Equation for the Bergman Kernel

  • Article
  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Certain integral operators involving the Szegö, the Bergman and the Cauchy kernels are known to have the reproducing property. Both the Szegö and the Bergman kernels have series representations in terms of an orthonormal basis. In this paper we derive the Cauchy kernel by means of biorthogonality. The ideas involved are then applied to construct a non-Hermitian kernel admitting a reproducing property for a space associated with the Bergman kernel. The construction leads to a domain integral equation for the Bergman kernel.1 2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, S. R. (1992): The Cauchy Transform, Potential Theory, and Conformal Mapping, CRC Press, Boca Raton.

    Google Scholar 

  2. Bergman, S. (1970): The Kernel Function and Conformai Mapping, AMS Math. Surveys Number 5, New York.

  3. Carlson, B. C. (1977): Special Functions of Applied Mathematics, Academic Press, New York.

    MATH  Google Scholar 

  4. Davis, P. J. (1975): Interpolation and Approximations, Dover, New York.

    Google Scholar 

  5. Gradsteyn, I. S., Ryzhik I. M. (1980) Table of Integrals, Series, and Products, Academic Press, New York.

    Google Scholar 

  6. Henrici, P. (1974): Applied and Computational Complex Analysis, Vol. I, John Wiley, New York.

    Google Scholar 

  7. Henrici, P. (1986): Applied and Computational Complex Analysis, Vol. III, John Wiley, New York.

    Google Scholar 

  8. Hille, E. (1962): Analytic Function Theory, Vol. II, Ginn, Boston.

    MATH  Google Scholar 

  9. Hille, E. (1972): Introduction to the general theory of reproducing kernels. Rocky Mountain J. Math. 2, 321–368.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kerzman, N., Stein, E. M. (1978): The Cauchy kernel, the Szegö kernel, and the Riemann mapping- function. Math. Ann. 236, 85–93.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kerzman, N., Trümmer, M. R. (1986): Numerical conformal mapping via the Szegö kernel. J. Comp. Appl. Math. 14, 111–123.

    Article  MATH  Google Scholar 

  12. Nehari, Z. (1952): Conformal Mapping, Dover, New York.

    MATH  Google Scholar 

  13. Papamichael, N., Warby, M. K. (1986) Stability and convergence properties of Bergman kernel methods for numerical conformai mapping. Numer. Math. 48, 639–669.

    Article  MathSciNet  MATH  Google Scholar 

  14. Razali, M. R. M., Nashed, M. Z., Murid, A. H. M. (1997): Numerical conformal mapping via the Bergman kernel. J. Comp. Appl. Math. 82, 333–350.

    Article  MathSciNet  MATH  Google Scholar 

  15. Szegö, G. (1939): Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, AMS, Providence.

  16. Trummer, M. R. (1986): An efficient implementation of a conformal mapping method based on the Szegö kernel. SIAM J. Numer. Anal. 23(4), 853–872.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. M. Murid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murid, A.H.M., Nashed, M.Z. & Razali, M.R.M. A Domain Integral Equation for the Bergman Kernel. Results. Math. 35, 161–174 (1999). https://doi.org/10.1007/BF03322030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322030

En]Keywords

Math. Subject Classification

Navigation