Polyols Regulate the Flower Senescence by Delaying Programmed Cell Death in Gladiolus

  • A. Arora
  • V. P. Singh
Short Communication


Programmed cell death (PCD) is associated with petal senescence, but little is known about the triggering or execution of the process of cell death in petals. In the present study, membrane disruption and DNA fragmentation, events characteristic of PCD, were found to be present in the advanced stage of petal senescence studied with ethylene-insensitive flowers of gladiolus, indicating that plant and animal cell death phenomena share one of the molecular events in the execution phase. When the gladiolus florets were treated with inositol both wilting and DNA fragmentation of petals were suppressed/delayed. The present study has provided the initial evidence that inositol has an inhibitory/suppressive effect on apoptotic cell death.

Key words

ethylene-insensitive flower senescence Gladiolus programmed cell death 



amino oxyacetic acid




membrane injury index


programmed cell death


silver thiosulphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora A & Singh VP, J Plant Biochem Biotech, 13 (2004) 123.CrossRefGoogle Scholar
  2. 2.
    Woltering EJ & van Doorn WG, J Exp Bot, 208 (1988) 1605.CrossRefGoogle Scholar
  3. 3.
    Yeo ET, Kwon HB, Han SE, Lee JT, Ryu JC & Byu MO, Mol Cells, 10 (2000) 263.PubMedGoogle Scholar
  4. 4.
    Otsubo M & Iwaya-Inoue M, Hort Sci, 35 (2000) 1107.Google Scholar
  5. 5.
    Borochov A & Woodson WR, Hort Rev, 11 (1989) 15.Google Scholar
  6. 6.
    Bailly C, Benamar A, Corbineau F & Come D, Physiol Plant, 97 (1996) 104.CrossRefGoogle Scholar
  7. 7.
    Doderer A, Kokkelink I, van der Veen S, Valk BE, Schram AW & Douma AC, Biochem Biophys Acta, 1120 (1992) 97.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamada T, Takatsu Y, Manabe T, Kasumi M & Marubashi W, Plant Sci, 164 (2003) 213.CrossRefGoogle Scholar
  9. 9.
    Smirrnoff N & Cumbes QJ, Phytochemistry, 28 (1989) 1057.CrossRefGoogle Scholar
  10. 10.
    Orthen B, Popp M & Smirnoff N, Proc R Soc Edinb, B 102 (1994) 269.Google Scholar
  11. 11.
    Amariutei A, Alexe C, Burzo I & Fjeld T, Acta Hort, 405 (1995) 372.Google Scholar
  12. 12.
    Drory A, Beja Tal S, Borochov A, Gindin E & Mayak S, Sci Hort, 64 (1995) 167.CrossRefGoogle Scholar
  13. 13.
    Dhindsa RS, Plumb-Dhindsa P & Thorpe TA, J Exp Bot, 32 (1981) 93.CrossRefGoogle Scholar
  14. 14.
    Jones R & McConchie R, Acta Hort, 405 (1995) 216.Google Scholar
  15. 15.
    Rubinstein B, Plant Mol Biol, 44 (2000) 303.PubMedCrossRefGoogle Scholar
  16. 16.
    Afford A & Randhawa S, Mol Pathol, 53 (2000) 55.PubMedCrossRefGoogle Scholar
  17. 17.
    Orzaez D & Granell A, FEBS Lett, 404 (1997) 275.PubMedCrossRefGoogle Scholar
  18. 18.
    Yamada T, Marubashi W, Nakamura T & Niwa M, Plant Cell Physiol, 42 (2001) 923.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Division of Plant PhysiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations