Advertisement

Characterization of Low Molecular Weight Glutenin Subunit Gene Representing Glu-B3 Locus of Indian Wheat Variety NP4

  • Sewa Ram
  • Vinamrata Bhatia
  • Veena Jain
  • B. Mishra
Article

Abstract

Low molecular weight (LMW) glutenin subunits represent major part (30%) of storage proteins in wheat endosperm and determine the quality of dough. Despite their importance few LMW glutenin genes have been characterized so far and none from Indian wheat variety. In the present investigation PCR technique was employed to characterize LMW-GS gene representing Glu-B3 locus from Indian bread wheat cultivar NP4. The deduced protein sequence coded by Glu-B3 locus of LMW-GS gene from NP4 showed the presence of regular structure of the repetitive domain with varying numbers of glutamine (Q) residues and the presence of 1st cysteine residue within the repetitive domain at 40th position in mature polypeptide. Such structure might increase and stabilize the gluten polymer through intermolecular interactions of the large numbers of glutamine side chains and cysteine residues for intermolecular disulphide bond formation leading to stronger dough quality of NP4. Moreover, Glu-B3 specific primers could also be used for identifying 1BL/1RS translocation in addition to amplifying LMW glutenin genes. There was no amplification in 1B/1R translocation lines as short arm of wheat was replaced by short arm of rye chromosome in these lines. Such information can be useful in wheat improvement for dough properties for better chapati and bread quality.

Key words

gluten strength low molecular weight glutenins mutation PCR sequencing 1B/1R translocation wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciaffi M, Lee YK, Tamas L, Gupta R, Skerritt J & Appels R, Theor Appl Genet, 98 (1999) 135.CrossRefGoogle Scholar
  2. 2.
    Singh NK & Shepherd KW, Theor Appl Genet, 66 (1998) 628.Google Scholar
  3. 3.
    Lew EJL, Kuzmicky DD & Kasarda DD, Cereal Chem, 69 (1992) 508.Google Scholar
  4. 4.
    Gupta RB & MacRitchie F, J Cereal Sci, 19 (1994) 19.CrossRefGoogle Scholar
  5. 5.
    Luo C, Griffin WB, Branlard G & McNeil DL, Theor Appl Genet, 102 (2001) 1088.CrossRefGoogle Scholar
  6. 6.
    Vaccino P, Redaelli R, Metakovsky EV, Borghi B, Corbellini M & Pogna NE, Theor Appl Genet, 105 (2002) 43.PubMedCrossRefGoogle Scholar
  7. 7.
    Pogna NE, Lafiandra D, Feillet P & Autran JC, J Cereal Sci, 7 (1988) 211.CrossRefGoogle Scholar
  8. 8.
    Ruiz M & Carillo JM, Theor Appl Genet, 87 (1993) 353.CrossRefGoogle Scholar
  9. 9.
    D’Ovidio R, & Masci S, J Cereal Sci, 39 (2004) 321.CrossRefGoogle Scholar
  10. 10.
    D’Ovidio R, Simeone M, Masci S & Porceddu E, Theor Appl Genet, 95 (1997) 1119.CrossRefGoogle Scholar
  11. 11.
    Masci S, D’Ovidio R, Lafiandra D & Kasarda DD, Plant Physiol, 118 (1998) 1147.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Campenhout S, Vander Stappen J, Sagi L & Volckaert G, Theor Appl Genet, 91 (1995) 313.CrossRefGoogle Scholar
  13. 13.
    Benmoussa M, Vezina LP, Page M, Yelle S & Laberge S, Theor Appl Genet, 100 (2000) 789CrossRefGoogle Scholar
  14. 14.
    Cloutier S, Rampitsch C, Penner GA & Lukow OM, J Cereal Sci, 33 (2001) 143.CrossRefGoogle Scholar
  15. 15.
    Cassidy BG, Dvorak J & Anderson OD, Theor Appl Genet, 96 (1998) 743.CrossRefGoogle Scholar
  16. 16.
    D’Ovidio R, Marchitelli C, Ercoli Cardelli L & Porceddu E, Theor Appl Genet, 98 (1999) 455.CrossRefGoogle Scholar
  17. 17.
    Lee YK, Ciaffi M, Morell MK & Appels R, Theor Appl Genet, 98 (1999) 126.CrossRefGoogle Scholar
  18. 18.
    Ikeda TM, Nagamine T, Fukuoka H & Yano H, Theor Appl Genet, 104 (2002) 680.PubMedCrossRefGoogle Scholar
  19. 19.
    AACC, Approved methods of American Association of Cereal Chemists, 10th edition. The Association: St. Paul, MN, USA (2000).Google Scholar
  20. 20.
    Benito C, Figueiras AM, Zaragoza C, Gallego FJ & de la Pena A, Plant Mol Biol, 21 (1993) 181.PubMedCrossRefGoogle Scholar
  21. 21.
    Pitts EG, Rafalski JA & Hedgcoth C, Nucleic Acids Res, 16 (1988) 11376.PubMedCrossRefGoogle Scholar
  22. 22.
    Colot V, Bartels D, Thompson R & Flavell R, Mol Gen Genet, 216 (1989) 81.PubMedCrossRefGoogle Scholar
  23. 23.
    D’Ovidio R, Tanzarella OA & Porceddu E, Plant Mol Biol, 18 (1992) 781.PubMedCrossRefGoogle Scholar
  24. 24.
    Masci S, D’Ovidio R, Lafiandra D & Kasarda DD, Theor Appl Genet, 100 (2000) 396.CrossRefGoogle Scholar
  25. 25.
    Shewry P & Tatham R, J Cereal Sci, 25 (1997) 207.CrossRefGoogle Scholar
  26. 26.
    Orsi A, Sparvoli F & Ceriotti A, J Biol Chem, 276 (34) (2001) 32322.PubMedCrossRefGoogle Scholar
  27. 27.
    Patacchini C, Masci S, D’Ovidio R & Lafiandra R, J Chrom, 786 (2003) 215.CrossRefGoogle Scholar
  28. 28.
    Sewa Ram, Jain N, Dawar V, Singh RP & Jag Shoran, Crop Sci, 45 (2005) 1256.CrossRefGoogle Scholar
  29. 29.
    Metakovsky EV & Branlard G, Theor Appl Genet, 96 (1998) 209.CrossRefGoogle Scholar
  30. 30.
    Dhaliwal AS, Mares DJ, Marshall DR & Skerritt JH, Cereal Chem, 65 (1988) 143.Google Scholar
  31. 31.
    Lee JH, Graybosch RA & Peterson CJ, Theor Appl Genet, 90 (1995) 105.CrossRefGoogle Scholar
  32. 32.
    Payne PI, Seekings JA, Worland JA, Jarvis MG & Holt LM, J Cereal Sci, 6 (1987) 103.CrossRefGoogle Scholar
  33. 33.
    Martin P & Carrillo JM, Euphytica, 108 (1999) 29.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Sewa Ram
    • 1
  • Vinamrata Bhatia
    • 1
  • Veena Jain
    • 2
  • B. Mishra
    • 1
  1. 1.Directorate of Wheat ResearchKarnalIndia
  2. 2.Department of BiochemistryCCS Haryana Agricultural UniversityHisarIndia

Personalised recommendations