Computational Methods and Function Theory

, Volume 11, Issue 2, pp 439–462 | Cite as

A Genus-3 Riemann-Hilbert Problem and Diffraction of a Wave by Two Orthogonal Resistive Half-Planes

  • Yuri A. Antipov


Diffraction of a plane electromagnetic wave (E-polarization) by two orthogonal electrically resistive half-planes is analyzed. The physical problem reduces to a Riemann-Hilbert problem in the real axis for four pairs of analytic functions \(\Phi^+_j(\eta)(\eta\ \in\ \rm C^+)$$ and $$\Phi^-_j(\eta) = \Phi^+_j (-\eta)(\eta\ \in\ {\rm C}^-),j = 1,2,3,4,\) where ℂ+ and ℂ are the upper and lower half-planes. It is shown that the problem is equivalent to two scalar Riemann-Hilbert problems on a plane and a Riemann-Hilbert problem on a genus-3 hyperelliptic surface subject to a certain symmetry condition. A closed-form solution is derived in terms of singular integrals and the genus-3 Riemann Theta function.


Riemann surfaces matrix factorization electromagnetic diffraction. 

2000 MSC

30Exx 35P05 45E05 78A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. A. Antipov, A symmetric Riemann-Hilbert problem for order-4 vectors in diffraction theory, Quart. J. Mech. Appl. Math. 63 (2010), 349–374.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Y. A. Antipov and N. G. Moiseev, Exact solution of the plane problem for a composite plane with a cut across the boundary between two media, J. Appl. Math. Mech. (PMM) 55 (1991), 531–539.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. A. Antipov and V. V. Silvestrov, Factorization on a Riemann surface in scattering theory, Quart. J. Mech. Appl. Math. 55 (2002), 607–654.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Y. A. Antipov and V. V. Silvestrov, Second-order functional-difference equations. I.: Method of the Riemann-Hilbert problem on Riemann surfaces, Quart. J. Mech. Appl. Math. 57 (2004), 245–265.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Y. A. Antipov and V. V. Silvestrov, Second-order functional-difference equations. II.: Scattering from a right-angled conductive wedge for E-polarization, Quart. J. Mech. Appl. Math. 57 (2004), 267–313.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Y. A. Antipov and V. V. Silvestrov, Vector functional-difference equation in electromagnetic scattering, IMA J. Appl. Math. 69 (2004), 27–69.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Y. A. Antipov and V. V. Silvestrov, Electromagnetic scattering from an anisotropic half-plane at oblique incidence: the exact solution, Quart. J. Mech. Appl. Math. 59 (2006), 211–251.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Y. A. Antipov and V. V. Silvestrov, Method of Riemann surfaces in the study of supercavitating flow around two hydrofoils in a channel, Physica D 235 (2007), 72–81.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Y. A. Antipov and A. Y. Zemlyanova, Motion of a yawed supercavitating wedge beneath a free surface, SIAM J. Appl. Math. 70 (2009), 923–948.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer-Verlag, Berlin etc., 1994.MATHGoogle Scholar
  11. 11.
    G. P. Cherepanov, Solution of a linear boundary value problem of Riemann for two functions and its application to certain mixed problems in the plane theory of elasticity, J. Appl. Math. Mech. (PMM) 26 (1962), 1369–1377.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    V. G. Daniele, The Wiener-Hopf technique for impenetrable wedges having arbitrary aperture angle, SIAM J. Appl. Math. 63 (2003), 1442–1460.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903.MATHGoogle Scholar
  14. 14.
    S. R. Legault and T. B. A. Senior, Solution of a second-order difference equation using the bilinear relations of Riemann, J. Math. Phys. 43 (2002), 1598–1621.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    N. G. Moiseev, Factorization of matrix functions of special form, Sov. Math. Dokl. 39 (1989), 264–267.MathSciNetMATHGoogle Scholar
  16. 16.
    N. G. Moiseev and G. Ya. Popov, Exact solution of the problem of bending of a semiinfinite plate completely bonded to an elastic half-space, Izv. AN SSSR, Solid Mechanics 25 (1990), 113–125.Google Scholar
  17. 17.
    B. M. Nuller, Contact problems for a system of a elastic half-planes, J. Appl. Math. Mech.(PMM) 54 (1990), 249–253.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    V. V. Silvestrov, On the elastic stress and strain state near a spatial crack on a two-sheeted surface, J. Appl. Math. Mech. (PMM) 54 (1990), 99–106.MathSciNetCrossRefGoogle Scholar
  19. 19.
    V. V. Silvestrov, The method of Riemann surfaces in the problem of interface cracks and inclusions under concentrated forces, Iz. VUZ 48 (2005), 75–88.MathSciNetGoogle Scholar
  20. 20.
    E. I. Zverovich, Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces, Russian Math. Surveys 26 (1971),117–192.CrossRefGoogle Scholar
  21. 21.
    E. I. Zverovich, A mixed problem of elasticity theory for the plane with cuts that lie on the real axis. Proc. Symp. Continuum Mechanics and Related Problems of Analysis (Tbilisi, 1971), Vol. 1, 103–114, Mecniereba, Tbilisi, 1973,Google Scholar

Copyright information

© Heldermann  Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations