Computational Methods and Function Theory

, Volume 12, Issue 1, pp 213–219 | Cite as

On Bounded Universal Functions

  • Andreas Vogt


We investigate boundedness properties of functions that are universal with respect to translations and “multiplicative translations”. It is well known that there exist entire functions which are universal in the sense of Birkhoff and are bounded on every line. We prove a negative result for multiplicative universal functions.


Universal functions boundedness on every line 

2000 MSC

30E10 30K15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Abe and P. Zappa, Universal functions on complex general linear groups, J. Approx. Theory 100 (1999), 221–232.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, Cambridge University Press, 2009.Google Scholar
  3. 3.
    L. Bernal-González and A. Bonilla, Universality of entire functions bounded on closed sets, J. Math. Anal. Appl. 315 (2006), 302–316.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    L. Bernal-González and A. Montes-Rodríguez, Universal functions for composition operators, Complex Variables 27 (1995), 47–56.MATHCrossRefGoogle Scholar
  5. 5.
    L. Bernal-González and J. A. Prado-Tendero, μ-Operators, J. Austral Math. Soc. (Series A) 78 (2005), 59–89.MATHCrossRefGoogle Scholar
  6. 6.
    G. D. Birkhoff, Démonstration d’une théorème élémentaire sur les fonctions enti`eres, C. R. Acad. Sci. Paris 189 (1929), 473–475.MATHGoogle Scholar
  7. 7.
    M. C. Calderón-Moreno, Universal functions with small derivatives and extremely fast growth, Analysis 22 (2002), 57–66.MATHGoogle Scholar
  8. 8.
    G. Costakis and M. Sambarino, Genericity of wild holomorphic functions and common hypercyclic vectors, Adv. Math. 182 (2004), 278–306.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    D. Gaier, Lectures on Complex Approximation, Birkhäuser, Boston, 1985.Google Scholar
  10. 10.
    T. Gharibyan, W. Luh and M. Nieß, Birkhoff functions that are bounded on prescribed sets, Arch. Math. 86 (2006), 261–267.MATHCrossRefGoogle Scholar
  11. 11.
    K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999), 345–381.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer, New York, 2011.MATHCrossRefGoogle Scholar
  13. 13.
    A. S. B. Holland, Introduction to the Theory of Entire Functions, Academic Press, New York, 1973.MATHGoogle Scholar
  14. 14.
    W. Luh, Entire functions with various universal properties, Complex Variables Theory Appl. 31 (1996), 87–96.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    M. Nieß, Universelle Funktionen mit zusätzlichen Eigenschaften, PhD-dissertation Universität Trier, 2006.Google Scholar
  16. 16.
    P. Zappa, On universal holomorphic functions, Bolletino U.M.I. A (7) 2 (1988), 345–352.MathSciNetMATHGoogle Scholar

Copyright information

© Heldermann  Verlag 2012

Authors and Affiliations

  1. 1.Department of Computer Science and MathematicsUniversity of TrierTrierGermany

Personalised recommendations