Advertisement

Common Zeros of the Solutions of Two Differential Equations

  • Asim Asiri
Article

Abstract

We consider two homogeneous linear differential equations and use Nevanlinna theory to determine when the solutions of these differential equations can have the same zeros or nearly the same zeros.

Keywords

Nevanlinna theory differential equations 

2000 MSC

30D35 34M05 34M10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Alotaibi, On complex oscillation theory, Results in Mathematics 47 (2005), 165–175.MathSciNetMATHGoogle Scholar
  2. 2.
    S. B. Bank and I. Laine, On the oscillation theory of f″ + Af = 0 where A is entire, Trans. Amer. Math. Soc. 273 no.1 (1982), 351–363.MathSciNetMATHGoogle Scholar
  3. 3.
    S. B. Bank and I. Laine, Representations of solutions of periodic second order linear differential equations, J. Reine Angew. Math. 344 (1983), 1–21.MathSciNetMATHGoogle Scholar
  4. 4.
    S. B. Bank, I. Laine and J. K. Langley, On the frequency of zeros of solutions of second order linear differential equations, Results Math. 10 (1986), 8–24.MathSciNetMATHGoogle Scholar
  5. 5.
    S. B. Bank, I. Laine and J. K. Langley, Oscillation results for solutions of linear differential equations in the complex plane, Results Math. 16 (1989), 3–15.MathSciNetMATHGoogle Scholar
  6. 6.
    S. B. Bank and J. K. Langley, Oscillation theory for higher order linear differential equations with entire coefficients, Complex Variables Theory Appl. 16 no.2–3 (1991), 163–175.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  8. 8.
    W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull 17 no.3 (1974), 317–358.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications Inc., Mineola, NY, 1997; Reprint of the 1976 original.MATHGoogle Scholar
  10. 10.
    I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics 15, Walter de Gruyter & Co., Berlin, 1993.CrossRefGoogle Scholar
  11. 11.
    J. K. Langley, Some oscillation theorems for higher order linear differential equations with entire coefficients of small growth, Results Math. 20 no.1–2 (1991), 517–529.MathSciNetMATHGoogle Scholar
  12. 12.
    J. K. Langley, On entire solutions of linear differential equations with one dominant coefficient, Analysis 15 no.2 (1995), 187–204; Corrections: Analysis 15 (1995), 433.MathSciNetMATHGoogle Scholar
  13. 13.
    J. Rossi, Second order differential equations with transcendental coefficients, Proc. Amer. Math. Soc. 97 (1986), 61–66.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen, Ergebnisse der Mathematik und ihrer Grenzgebiete 8, Springer, Berlin, Göttingen, Heidelberg, 1955.MATHGoogle Scholar

Copyright information

© Heldermann  Verlag 2012

Authors and Affiliations

  1. 1.Faculty of Education, Department of MathematicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations