Computational Methods and Function Theory

, Volume 11, Issue 1, pp 161–178 | Cite as

The Global Parametrix in the Riemann-Hilbert Steepest Descent Analysis for Orthogonal Polynomials

  • Arno B. J. Kuijlaars
  • Man Yue Mo


In the application of the Deift-Zhou steepest descent method to the Riemann-Hilbert problem for orthogonal polynomials, a model Riemann-Hilbert problem that appears in the multi-cut case is solved with the use of hyperelliptic theta functions. We present here an alternative approach which uses meromorphic differentials instead of theta functions to construct the solution of the model Riemann-Hilbert problem. By using this representation, we obtain a new and elementary proof for the solvability of the model Riemann-Hilbert problem.


Riemann-Hilbert problem meromorphic differentials solvability 

2000 MSC

34M50 30F30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Aptekarev, Analysis of the matrix Riemann-Hilbert problems for the case of higher genus — asymptotics of polynomials orthogonal on a system of intervals, KIAM Preprint 28, Keldysh Institute of Appl. Math., Moscow, 2008.Google Scholar
  2. 2.
    P. Bleher, S. Delvaux and A. B. J. Kuijlaars, Random matrix model with external source and a constrained vector equilibrium problem, to appear in Comm. Pure Appl. Math., preprint arXiv: 1001.1238.Google Scholar
  3. 3.
    A. A. Bolibruch, The Riemann-Hilbert problem, Russian Math. Surveys 45 (2) (1990), 1–58.CrossRefGoogle Scholar
  4. 4.
    L. E. J. Brouwer, Zur Invarianz des n-dimensionalen Gebiets, Math. Ann. 72 (1912), 55–56.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics Vol. 3, Amer. Math. Soc., Providence R.I., 1999.Google Scholar
  6. 6.
    P. Deift, A. Its, A. Kapaev and X. Zhou, On the algebro-geometric integration of the Schlesinger equations, Comm. Math. Phys. 203 no.3 (1999), 613–633.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    P. Deift, A. R. Its and X. Zhou, A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math. 146 (1997), 149–235.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335–1425.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2) 137 no.2 (1993), 295–368.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.MATHGoogle Scholar
  11. 11.
    M. Duits and A. B. J. Kuijlaars, Universality in the two matrix model: a Riemann-Hilbert steepest descent analysis, Comm. Pure Appl. Math. 62 (2009), 1076–1153.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    M. Duits, A. B. J. Kuijlaars and M. Y. Mo, The Hermitian two matrix model with an even quartic potential, in preparation.Google Scholar
  13. 13.
    H. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Mathematics 71, Springer-Verlag, New York-Berlin, 1980.CrossRefGoogle Scholar
  14. 14.
    W. Fulton, Algebraic Topology, a First Course, Springer-Verlag, New York, 1995.MATHCrossRefGoogle Scholar
  15. 15.
    M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II, Physica D 2 (1981), 407–448.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    S. Kamvissis, K. D. T.-R. McLaughlin and P. D. Miller, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation Ann. Math. Studies 154, Princeton University Press, Princeton, NJ, 2003.Google Scholar
  17. 17.
    A. V. Kitaev and D. Korotkin, On solutions of the Schlesinger equations in terms of Θ- functions, Internat. Math. Res. Notices (1998), 877–905.Google Scholar
  18. 18.
    D. Korotkin, Introduction to the functions on compact Riemann surfaces and theta-functions, in: D. Wojcik and J. Cieslinski (eds.), Nonlinearity and Geometry, Polish Scient. Publ. PWN, Warsaw, 1998, pp. 109–139; Preprint arXiv:solv-int/9911002.Google Scholar
  19. 19.
    D. Korotkin, Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices, Math. Ann. 329 (2004), 335–364.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    B. Malgrange, Sur les déformations isomonodromiques I, singularités réguli`eres, in: Mathematics and Physics, Paris, 1979/1982, Progress in Mathematics 37, Birkhäuser, Boston, 1983, 401–426.Google Scholar
  21. 21.
    M. Y. Mo, Universality in the two matrix model with a monomial quartic and a general even polynomial potential, Commun. Math. Phys. 291 (2009), 863–894.MATHCrossRefGoogle Scholar
  22. 22.
    W. Van Assche, J. Geronimo and A. B. J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, in: J. Bustoz et al. (eds.), Special Functions 2000: Current Perspectives and Future Directions, Kluwer, Dordrecht, 2001, 23–59.CrossRefGoogle Scholar

Copyright information

© Heldermann  Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Department of MathematicsUniversity of BristolBristolUK

Personalised recommendations