Skip to main content
Log in

The Global Parametrix in the Riemann-Hilbert Steepest Descent Analysis for Orthogonal Polynomials

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

In the application of the Deift-Zhou steepest descent method to the Riemann-Hilbert problem for orthogonal polynomials, a model Riemann-Hilbert problem that appears in the multi-cut case is solved with the use of hyperelliptic theta functions. We present here an alternative approach which uses meromorphic differentials instead of theta functions to construct the solution of the model Riemann-Hilbert problem. By using this representation, we obtain a new and elementary proof for the solvability of the model Riemann-Hilbert problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Aptekarev, Analysis of the matrix Riemann-Hilbert problems for the case of higher genus — asymptotics of polynomials orthogonal on a system of intervals, KIAM Preprint 28, Keldysh Institute of Appl. Math., Moscow, 2008.

    Google Scholar 

  2. P. Bleher, S. Delvaux and A. B. J. Kuijlaars, Random matrix model with external source and a constrained vector equilibrium problem, to appear in Comm. Pure Appl. Math., preprint arXiv: 1001.1238.

  3. A. A. Bolibruch, The Riemann-Hilbert problem, Russian Math. Surveys 45 (2) (1990), 1–58.

    Article  Google Scholar 

  4. L. E. J. Brouwer, Zur Invarianz des n-dimensionalen Gebiets, Math. Ann. 72 (1912), 55–56.

    Article  MathSciNet  Google Scholar 

  5. P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics Vol. 3, Amer. Math. Soc., Providence R.I., 1999.

    Google Scholar 

  6. P. Deift, A. Its, A. Kapaev and X. Zhou, On the algebro-geometric integration of the Schlesinger equations, Comm. Math. Phys. 203 no.3 (1999), 613–633.

    Article  MathSciNet  Google Scholar 

  7. P. Deift, A. R. Its and X. Zhou, A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. Math. 146 (1997), 149–235.

    Article  MathSciNet  Google Scholar 

  8. P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335–1425.

    Article  MathSciNet  Google Scholar 

  9. P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2) 137 no.2 (1993), 295–368.

    Article  MathSciNet  Google Scholar 

  10. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.

    MATH  Google Scholar 

  11. M. Duits and A. B. J. Kuijlaars, Universality in the two matrix model: a Riemann-Hilbert steepest descent analysis, Comm. Pure Appl. Math. 62 (2009), 1076–1153.

    Article  MathSciNet  Google Scholar 

  12. M. Duits, A. B. J. Kuijlaars and M. Y. Mo, The Hermitian two matrix model with an even quartic potential, in preparation.

  13. H. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Mathematics 71, Springer-Verlag, New York-Berlin, 1980.

    Google Scholar 

  14. W. Fulton, Algebraic Topology, a First Course, Springer-Verlag, New York, 1995.

    Book  Google Scholar 

  15. M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II, Physica D 2 (1981), 407–448.

    Article  MathSciNet  Google Scholar 

  16. S. Kamvissis, K. D. T.-R. McLaughlin and P. D. Miller, Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation Ann. Math. Studies 154, Princeton University Press, Princeton, NJ, 2003.

    Google Scholar 

  17. A. V. Kitaev and D. Korotkin, On solutions of the Schlesinger equations in terms of Θ- functions, Internat. Math. Res. Notices (1998), 877–905.

    Article  Google Scholar 

  18. D. Korotkin, Introduction to the functions on compact Riemann surfaces and theta-functions, in: D. Wojcik and J. Cieslinski (eds.), Nonlinearity and Geometry, Polish Scient. Publ. PWN, Warsaw, 1998, pp. 109–139; Preprint arXiv:solv-int/9911002.

    MATH  Google Scholar 

  19. D. Korotkin, Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices, Math. Ann. 329 (2004), 335–364.

    Article  MathSciNet  Google Scholar 

  20. B. Malgrange, Sur les déformations isomonodromiques I, singularités réguli`eres, in: Mathematics and Physics, Paris, 1979/1982, Progress in Mathematics 37, Birkhäuser, Boston, 1983, 401–426.

    Google Scholar 

  21. M. Y. Mo, Universality in the two matrix model with a monomial quartic and a general even polynomial potential, Commun. Math. Phys. 291 (2009), 863–894.

    Article  MathSciNet  Google Scholar 

  22. W. Van Assche, J. Geronimo and A. B. J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, in: J. Bustoz et al. (eds.), Special Functions 2000: Current Perspectives and Future Directions, Kluwer, Dordrecht, 2001, 23–59.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno B. J. Kuijlaars.

Additional information

The first author is supported by FWO-Flanders project G.0427.09, by K.U. Leuven research grant OT/08/33, by the Belgian Interuniversity Attraction Pole P06/02, by the European Science Foundation Program MISGAM, and by grant MTM2008-06689-C02-01 of the Spanish Ministry of Science and Innovation. The second author is supported by the EPSRC grant EP/G019843/1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuijlaars, A.B.J., Mo, M.Y. The Global Parametrix in the Riemann-Hilbert Steepest Descent Analysis for Orthogonal Polynomials. Comput. Methods Funct. Theory 11, 161–178 (2011). https://doi.org/10.1007/BF03321795

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321795

Keywords

2000 MSC

Navigation