Advertisement

Computational Methods and Function Theory

, Volume 10, Issue 1, pp 281–289 | Cite as

The Hadamard Product as a Universality Preserving Operator

  • Jürgen Müller
  • Timo Pohlen
Article

Abstract

Let ψ be holomorphic in a domain containing 0 and ∞, and φ a function that has a universal Taylor series with respect to 0. We consider the question whether the Hadamard product ψ * φ has a similar universality property.

Keywords

Hadamard product universal series overconvergence lacunary approximation 

2000 MSC

30B 30E10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Boas, Entire functions, New York: Academic Press, 1954.MATHGoogle Scholar
  2. 2.
    C. K. Chui and M. N. Parnes, Approximation by overconvergence of power series, J. Math. Anal. Appl. 36 (1971), 693–696.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    G. Costakis, Some remarks on universal functions and Taylor series, Math. Proc. Camb. Phil. Soc. 128 (2000), 157–175.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    K.-G. Große-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999), 345–381.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    E. Hille, Analytic Function Theory Volume II, New York: Chelsea Publishing Company 1962.Google Scholar
  6. 6.
    W. Luh, Universal approximation properties of overconvergent power series on open sets, Analysis 6 (1986), 191–207.MathSciNetMATHGoogle Scholar
  7. 7.
    W. Luh, V. A. Martirosian and J. Müller, Restricted T-Universal Functions, J. Approx. Theory 114 no.2 (2002), 201–213.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V. A. Martirosian and J. Müller, A Liouville-type result for lacunary power series and converse results for universal holomorphic functions, Analysis 26 (2006), 393–399.MATHCrossRefGoogle Scholar
  9. 9.
    J. Müller and T. Pohlen, The Hadamard product on open sets in the extended plane, submitted.Google Scholar
  10. 10.
    V. Nestoridis, Universal Taylor series, Ann. Inst. Fourier 46 (1996), 1293–1306.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    V. Nestoridis, An extension of the notion of universal Taylor series, in: N. Papamichael, S. Ruscheweyh, E. B. Saff (eds.), Proceedings of the 3rd CMFT conference on computational methods and function theory 1997, Nicosia, Cyprus, October 13–17, 1997, World Scientific. Ser. Approx. Decompos. 11 (1999), 421–430.Google Scholar
  12. 12.
    B. Schillings, Approximation by overconvergent power series, Izv. Nats. Akad. Nauk Armenii Mat. 38 (2003), 85–94 (English, Russian summary); translation in: J. Contemp. Math. Anal. 38 (2003), 74–82.MathSciNetGoogle Scholar

Copyright information

© Heldermann  Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Trier, Fachbereich IVTrierGermany

Personalised recommendations