Computational Methods and Function Theory

, Volume 9, Issue 2, pp 609–632 | Cite as

On Riemann-Hilbert Problems in Circle Packing

  • Elias Wegert
  • David Bauer


We propose a discrete counterpart of non-linear boundary value problems for holomorphic functions (Riemann-Hilbert problems) in the framework of circle packing. For packings with simple combinatorial structure and circular target curves appropriate solvability conditions are given and the set of all solutions is described. We compare the discrete and the continuous setting and discuss several discretization effects. In the last section we indicate promising directions for further research and report on the results of some test calculations which show that solutions of the circle packing problem approximate the classical solutions surprisingly well.


Riemann-Hilbert problems circle packing conformal geometry hyperbolic geometry 

2000 MSC

Primary 30E25 Secondary 52C26 30C35 kl]30C80 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bauer, K. Stephenson and E. Wegert, Circle packings as differentiable manifolds, in preparation.Google Scholar
  2. 2.
    Ch. Glader and E. Wegert, Nonlinear Riemann-Hilbert problems with circular target curves, Math. Nachr. 281 No.9 (2008), 1221–1239.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Z.-X. He and O. Schramm, On the convergence of circle packings to the Riemann map, Invent. Math. 125 (1996), 285–305.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    P. Koebe, Kontaktprobleme der konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Klasse 88 (1936), 141–164.Google Scholar
  5. 5.
    B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, in: R. Dedekind and H. Weber (eds.), Gesammelte mathematische Werke und wissenschaftlicher Nachlaß, Leipzig 1876, 3–47.Google Scholar
  6. 6.
    B. Rodin and D. Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geometry 26 (1987), 349–360.MathSciNetMATHGoogle Scholar
  7. 7.
    A. Shnirel’man, The degree of a quasi-linearlike mapping and the nonlinear Hilbert problem, (in Russian), Mat. Sb. 89 (1972) 3, 366–389; English transl.: Math. USSR Sbornik 18 (1974), 373–396.MathSciNetGoogle Scholar
  8. 8.
    K. Stephenson, Introduction to Circle Packing — The Theory of Discrete Analytic functions, Cambridge Univ. Press, Cambridge 2005.MATHGoogle Scholar
  9. 9.
    K. Stephenson, A probabilistic proof of Thurston’s conjecture on circle packings. Rend. Semin. Mat. Fis. Milano 66 (1998), 201–291.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    K. Stephenson and J. Ashe, Fractal branching, personal communication, University of Tennessee at Knoxville 2007.Google Scholar
  11. 11.
    E. Wegert, Topological methods for strongly nonlinear Riemann-Hilbert problems for holomorphic functions, Math. Nachr. 134 (1987), 201–230.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    E. Wegert, Nonlinear Boundary Value Problems for Holomorphic Functions and Singular Integral Equations, Akademie Verlag, Berlin 1992.MATHGoogle Scholar
  13. 13.
    E. Wegert, Nonlinear Riemann-Hilbert problems — history and perspectives, in: N. Papamichael et al. (eds.), Proc. 3rd CMFT Conf. 1997 World Scientific, Ser. Approx. Decompos. 11 (1999), 583–615.Google Scholar

Copyright information

© Heldermann  Verlag 2009

Authors and Affiliations

  1. 1.Institute of Applied AnalysisTech Univ Bergakademie FreibergFreibergGermany
  2. 2.MPI for Mathematics in the SciencesLeipzigGermany

Personalised recommendations