Computational Methods and Function Theory

, Volume 9, Issue 1, pp 305–322 | Cite as

On the Stability of Taylor Sections of a Function \(\matrix{\sum^\infty_{k=0}} z^k / a^{k^2}\), a > 1



We investigate the following problem: given a positive integer n, which are the smallest values of the constants s n, such that the zeros of \(f _{a,n}(z) := \matrix{\sum^n_{k=0}} z^k/a^{k^2}\) are with negative real parts when a > s n?


Hurwitz polynomial stable polynomial zeros of sections of entire functions 

2000 MSC

30C15 30D15 26C10 34D99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987), 165–219.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    M. Biehler, Sur une classe d’équations algébriques dont toutes les racines sont réelles, J. Reine Angew. Math. 87 (1879), 350–352.MATHGoogle Scholar
  3. 3.
    T. Craven and G. Csordas, A sufficient condition for strict total positivity of a matrix, Linear Multilinear Algebra 45 (1998), 19–34.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    D. K. Dimitrov and J. M. Peña, Almost strict total positivity and a class of Hurwitz polynomials, J. Approx. Theory 132 (2005), 212–223.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    F. R. Gantmacher, The Theory of Matrices, Vol. II, Chelsea Publ., New York, 1959.MATHGoogle Scholar
  6. 6.
    C. Hermite, Sur les nombre des racines d’une équation algébrique comprise entre des limites données, J. Reine Angew. Math. 52 (1856), 39–51.MATHCrossRefGoogle Scholar
  7. 7.
    A. Hurwitz and R. Courant, Theory of Functions, Springer Verlag, Berlin 1925 (in German).Google Scholar
  8. 8.
    S. Karlin, Total Positivity, Vol. I, Stanford University Press, California 1968.MATHGoogle Scholar
  9. 9.
    O. M. Katkova, T. Lobova and A. M. Vishnyakova, On power series having sections with only real zeros, Comput. Methods Funct. Theory 3 no.2 (2003), 425–441.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    O.M. Katkova and A. M. Vishnyakova, On sufficient conditions for the total positivity and for the multiple positivity of matrices, Linear Algebra Appl. 416 (2006), 1083–1097.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    —, A sufficient condition for a polynomial to be stable, submitted.Google Scholar
  12. 12.
    B. Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Mono., 5, Amer. Math. Soc., Providence, RI, 1964; revised ed. 1980.Google Scholar
  13. 13.
    M. Marden, Geometry of Polynomials, Amer. Math. Soc. Surveys, Vol. 3, Providence, RI, 1966.Google Scholar
  14. 14.
    G. Pólya, Über einen Satz von Laguerre, Jber. Deutsch. Math.-Verein. 38 (1929), 161–168.MATHGoogle Scholar
  15. 15.
    G. Pólya, Collected Papers, Vol. II, Location of Zeros, R. P. Boas (ed.), MIT Press, Cambridge, MA, 1974.Google Scholar
  16. 16.
    G. Pólya and J. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Andrew. Math. 144 (1914), 89–113.MATHGoogle Scholar
  17. 17.
    M. M. Postnikov, Stable Polynomials, Moscow, Nauka, 1981 (in Russian).Google Scholar

Copyright information

© Heldermann  Verlag 2009

Authors and Affiliations

  1. 1.Dept. of Math.Kharkov National UniversityKharkovUkraine

Personalised recommendations