Extreme and Support Points of the Class of Non-Vanishing Univalent Functions



Let S 0 be the standard class of non-vanishing univalent functions in the unit disc. In this article we present a generalization of the classical ellipse theorem for this class.


Non-vanishing univalent functions extreme points support points 

2000 MSC

30C45 30C55 30C75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Aharonov, On the univalence of an implicit function, Complex Variables 3 (1984), 27–31.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    L. Brickman, Extreme points of the set of univalent functions, Bull. Amer. Math. Soc. 76 (1970), 372–374.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    L. Brickman, Certain algebraic functions and extreme points of S, Michigan Math. J. 22 (1975), 201–203.MathSciNetMATHGoogle Scholar
  4. 4.
    L. Brickman and D. Wilken, Support points of the set of univalent functions, Proc. Amer. Math. Soc. 42 (1974), 523–528.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    L. Brickman, T. H. MacGregor and R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    P. L. Duren, Univalent Functions, Springer, New York, 1983.MATHGoogle Scholar
  7. 7.
    P. L. Duren and G. Schober, Nonvanishing univalent functions, Math. Z. 170 (1980), 195–216.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    D. J. Hallenback and T. H. MacGregor, Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman, Boston, 1984.Google Scholar
  9. 9.
    W. K. Hayman, Multivalent Functions, Second Edition, Cambridge Univ. Press, Cambridge, 1994.MATHCrossRefGoogle Scholar
  10. 10.
    W. Hengartner and G. Schober, Extreme points for some classes of univalent functions, Trans. Amer. Math. Soc. 185 (1973), 265–270.MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. H. MacGregor and D. R. Wilken, Extreme points and support points, in: R. Kühnau (ed.), Handbook of Complex Analysis, Vol.1 Geometric Function Theory, Elsevier Science B.V., 2002, Ch. 12, 371–392Google Scholar
  12. 12.
    Ch. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.MATHGoogle Scholar
  13. 13.
    G. Schober, Univalent Functions — Selected Topics, Lecture Notes in Mathematics 478, Springer, Berlin — Heidelberg — New York, 1975.MATHCrossRefGoogle Scholar

Copyright information

© Heldermann  Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations