On the Boundary Behaviour of Univalent Harmonic Mappings onto Convex Domains

  • Daoud Bshouty
  • Abdallah Lyzzaik
  • Allen Weitsman


In this note we discuss the boundary behavior of a univalent harmonic mapping f from the unit disk U “onto” a bounded convex domain Ω in the sense of Hengartner and Schober, whose second dilatation function a is an inner function. This problem was raised by Laugesen in [10].


Harmonic mapping analytic dilatation convex domains elliptic differential equation 

2000 MSC

26C10 30C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bshouty and W. Hengartner, Univalent solutions of the Dirichlet problem for ring domains, Complex Variables 21 (1993), 159–169.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    D. Bshouty and W. Hengartner, Boundary values versus dilatations of harmonic mappings, J. Analyse Math. 72 (1997), 141–164.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    D. Bshouty, W. Hengartner and O. Hossian, Harmonic typically real mappings, Math. Proc. Cambridge Phil. Soc. 119 (1996), 673–680.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    D. Bshouty and A. Lyzzaik, Uniqueness of harmonic mappings into bounded strictly star-like domains with rectifiable boundary, preprint.Google Scholar
  5. 5.
    D. Bshouty, A. Lyzzaik and A. Weitsman, Uniqueness of harmonic mappings with Blaschke dilatations, J. Geom. Anal. 17 (2007) no.1, 41–47.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    G. Cargo, The boundary behavior of Blaschke products, J. Math. Anal. Appl. 5 (1962), 1–16.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    O. Frostman, Potential d’equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Mat. Sem. 3 (1935), 1–118.Google Scholar
  8. 8.
    O. Frostman, Sur les produits de Blaschke, Fysiogr. Sällsk. Lund Förh. 12 (1942) no.15, 169–182.MathSciNetGoogle Scholar
  9. 9.
    W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. London Math. Soc. (2) 33 (1986), 473–483.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    R. Laugesen, Planar harmonic maps with inner and Blaschke dilatations, J. London Math. Soc. (2) 56 (1997), 37–48.MathSciNetCrossRefGoogle Scholar

Copyright information

© Heldermann  Verlag 2008

Authors and Affiliations

  • Daoud Bshouty
    • 1
  • Abdallah Lyzzaik
    • 2
  • Allen Weitsman
    • 3
  1. 1.Department of MathematicsTechnionHaifaIsrael
  2. 2.Department of MathematicsAmerican University of BeirutBeirutLebanon
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations