Computational Methods and Function Theory

, Volume 7, Issue 2, pp 543–561 | Cite as

Universality Limits Involving Orthogonal Polynomials on the Unit Circle

  • Eli Levin
  • Doron S. Lubinsky


We establish universality limits for measures on the unit circle. Assume that μ is a regular measure on the unit circle in the sense of Stahl and Totik, and is absolutely continuous in an open arc containing some point z = e iθ. Assume, moreover, that μ′ is positive and continuous at z. then universality for μ holds at z, in the sense that the normalized reproducing kernel ~Kn(z, t) satisfies
$${\rm lim}_{n\to \infty}{1\over n}\tilde{K}_{n}(e^{i(\theta + 2\pi a/n)},e^{i(\theta + 2\pi b/n)}\bigg) = e^{i\pi(a-b)}{{\rm sin} \pi (b-a)\over \pi (b-a)}$$
, uniformly for a, b in compact subsets of the real line.


Universality limits 

2000 MSC

42C05 30C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin and P. D. Miller, Uniform Asymptotics for Polynomials Orthogonal with respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles, Princeton Annals of Mathematics Studies, 2006.Google Scholar
  2. 2.
    T. Bloom and N. Levenberg, Strong asymptotics of Christoffel functions for planar measures, manuscript.Google Scholar
  3. 3.
    R. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.MATHCrossRefGoogle Scholar
  4. 4.
    P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Institute Lecture Notes, Vol. 3, New York University Press, New York, 1999.Google Scholar
  5. 5.
    P. Deift, Integrable operators, in: Differential Operators and Spectral Theory, Translations of the American Mathematical Society Series 2, 189 (1999), 69–84.MathSciNetGoogle Scholar
  6. 6.
    P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), 1335–1425.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    L. Golinskii, Akhiezer’s orthogonal polynomials and Bernstein-Szegő method for a circular arc, J. Approx. Theory 95 (1998), 229–263.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. B. Kuijlaars and M. Vanlessen, Universality for eigenvalue correlations from the modified Jacobi unitary ensemble, Int. Math. Res. Not. 30 (2002), 1575–1600.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Last and B. Simon, Fine structure of the zeros of orthogonal polynomials, IV: A priori bounds and clock behavior, to appear in Comm. Pure Appl. Math. Google Scholar
  10. 10.
    E. Levin and D.S. Lubinsky, Universality limits for exponential weights, manuscript.Google Scholar
  11. 11.
    —, Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials, to appear in J. Approx. Theory. Google Scholar
  12. 12.
    D. S. Lubinsky, Lp Markov-Bernstein inequalities on arcs of the circle, J. Approx. Theory 108 (2001), 1–17.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    —, A new approach to universality limits involving orthogonal polynomials, to appear in Ann. of Math. Google Scholar
  14. 14.
    —, A new approach to universality limits at the edge of the spectrum, to appear in Cont. Math. (Proceedings of the 60th birthday conference of P. Deift).Google Scholar
  15. 15.
    A. Martinez-Finkelshtein, K. T.-R. McLaughlin and E. B. Saff, Szegö orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics, Const. Approx. 24 (2006), 319–363.Google Scholar
  16. 16.
    A. Mate, P. Nevai and V. Totik, Szegő’s extremum problem on the unit circle, Ann. of Math. 134 (1991), 433–453.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    K. T.-R. McLaughlin and P. D. Miller, The ∂ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, IMRP Int. Math. Res. Pap. (2006), 1–78.Google Scholar
  18. 18.
    M. L. Mehta, Random Matrices, 2nd edn., Academic Press, Boston, 1991.MATHGoogle Scholar
  19. 19.
    P. Nevai, Orthogonal Polynomials, Memoirs of the AMS 213 (1979).Google Scholar
  20. 20.
    P. Nevai, Geza Freud, orthogonal polynomials and Christoffel functions: a case study, J. Approx. Theory 48 (1986), 3–167.MATHCrossRefGoogle Scholar
  21. 21.
    F. Riesz and B. Sz-Nagy, Functional Analysis, Dover, New York, 1990.MATHGoogle Scholar
  22. 22.
    B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.Google Scholar
  23. 23.
    B. Simon, Fine structure of the zeros of orthogonal polynomials, I. A tale of two pictures, Electron. Trans. Numer. Anal. 25 (2006), 328–268.MathSciNetMATHGoogle Scholar
  24. 24.
    —, Rank one perturbations and zeros of paraorthogonal polynomials on the unit circle, to appear in J. Math. Anal. Appl.Google Scholar
  25. 25.
    H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.MATHCrossRefGoogle Scholar
  26. 26.
    G. Szegő, Orthogonal Polynomials, 4th edn., American Mathematical Society Colloquium Publications, Vol. 23, Amer. Math. Soc. Providence, 1975.Google Scholar
  27. 27.
    V. Totik, Asymptotics for Christoffel functions for general measures on the real line, J. Analyse Math. 81 (2000), 283–303.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    M. W. Wong, First and second kind paraorthogonal polynomials and their zeros, to appear in J. Approx. Theory. Google Scholar

Copyright information

© Heldermann  Verlag 2007

Authors and Affiliations

  1. 1.Mathematics DepartmentThe Open University of IsraelRaananaIsrael
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations