Welding in the World

, Volume 56, Issue 3–4, pp 108–114 | Cite as

Joining Oftitanium-Aluminium Seat Tracks for Aircraft Applications — System Technology and Joint Properties

Peer-Reviewed Section


The current state of the art in light-weight construction for aircraft structures such as seat tracks, is the use of either aluminium or titanium materials. Whereas aluminium seat tracks are light-weight and less expensive, titanium seat tracks offer superior corrosion properties at higher cost. In order to combine the advantages of both materials, a hybrid Ti-AI structure is proposed. To produce such a structure, an appropriate thermal, laser-based brazing process was developed in a joint project of BIAS and their partners from industry. In this paper, the results from this research work will be reported and discussed. On the basis of the development of an appropriate system technology, the process development will be described, focusing on the main influencing parameters of the process on joint properties, which were characterized by metallurgical analyses, hardness testing and static tensile tests. It will be shown that laser beam joining is suitable to produce load-bearing aluminium-titanium-structures.

IIW-Thesaurus keywords

Aircraft Aluminium Brazing Lasers Titanium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kreimeyer M. and Vollertsen F.: Processing titanium-aluminium hybrid joints for aircraft applications, in: Beyer F. et al. (Eds.): Proceedings of the 3rd International WLT-Conference on Lasers in Manufacturing LIM 2005, Munich, June 2005, pp. 73-78.Google Scholar
  2. [2]
    Sepold G., Schubert E. and Zerner I.: Laser beam Joining of dissimilar materials, IIW Doc. IV-734-99, 1999.Google Scholar
  3. [3]
    Chularis A.A., Kolpacheva O.V. and Tomashevskii V.M.: Electron structure and properties of intermetallic compounds in titanium-metal dissimilar joints, Welding International, 1995, vol. 9, no. 10, pp. 812–814.CrossRefGoogle Scholar
  4. [4]
    Yajiang L., Juan W., Peng L. and Jiangwei R.: Microstructure and XRD analysis near the interface of Ti/ Al diffusion bonding, International Journal for the Joining of Materials, 2005, vol. 17, no. 2, pp. 53–57.Google Scholar
  5. [5]
    Strong A.B. (Ed.): Composites in manufacturing, Dearborn, Society of Manufacturing Engineers, 1991.Google Scholar
  6. [6]
    Hansen M.: Constitution of binary alloys, McGraw-Hill, New York, 1958.Google Scholar
  7. [7]
    Lison R.: Verbindungsschweiβen unterschiedlicher Werkstoffe — exemplarisch vorgestellt, Welding of dissimilar materials — presented exemplary, Jahrbuch Schweiβtechnik 99, Deutscher Verlag für Schweiβtechnik, Düsseldorf, 1999 (in German).Google Scholar
  8. [8]
    Titan kann mit Aluminium verbunden werden (It is possible to join titanium with aluminium), Nippon Aluminium nimmt dünne Kupferlagen und ultraschallbehandeltes Lot. Blick durch die Wirtschaft. Beilage zur Frankfurter Allgemeinen Zeitung, 1993, vol. 36, 1 50 (in German).Google Scholar
  9. [9]
    Suoda P., Dujak J. and Michalicka P.: Creation of heterogeneous weld joints of titanium- and aluminium-based materials by electron beam welding, Welding Science and Technology, Japan Slovak Welding Symposium, Tatranske Matliare, 1996.Google Scholar
  10. [10]
    Fuji A., Ameyama K. and North T.H.: Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction joints, Journal of Materials Science, 1995, vol. 30, no. 20, pp. 5185–5191.CrossRefGoogle Scholar
  11. [11]
    Fuji A., Kimura M., North T.H., Ameyama K. and Aki M.: Mechanical properties of titanium-5083 aluminium alloy friction joints, Materials Science and Technology, 1997, vol. 13, no. 8, pp. 673–678.CrossRefGoogle Scholar
  12. [12]
    Ege E. and Inal O.T.: Stability of interfaces in explosively-welded aluminium titanium laminates, Journal of Materials Science Letters, 2000, vol. 19, no. 17, pp. 1533–1535.CrossRefGoogle Scholar
  13. [13]
    Kreimeyer M., Wagner F., Zerner I. and Sepold G.: Laserstrahlfügen von Aluminium mit Titan unter Verwendung eines optimierten Arbeitskopfs, Laser beam joining of aluminium and titanium by using an optimized working system, Proc. Löt 01, Aachen, DVS-Berichte 212, DVS-Verlag: Düsseldorf, 2001, pp. 317–321 (in German).Google Scholar
  14. [14]
    Seefeld T., Kreimeyer M., Wagner F. and Sepold G.: Laserstrahlfügen von Mischverbindungen, Laser beam joining of dissimilar materials, 4. Laser-Anwenderforum, Bremen, 2002, pp. 215-224 (in German).Google Scholar
  15. [15]
    Kreimeyer M., Wagner F. and Vollertsen F.: Laser processing of aluminium-titanium-tailored blanks, Optics and Lasers in Engineering, 2005, vol. 43, no. 9, pp. 1021–1035.CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2012

Authors and Affiliations

  1. 1.BIAS Bremer Institut für angewandte Strahltechnik GmbHBremenGermany

Personalised recommendations