Skip to main content
Log in

Conjugate Harmonic Functions in Euclidean Space: a Spherical Approach

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Given a harmonic function U in a domain Ω in Euclidean space, the problem of finding a harmonic conjugate V, generalizing the well-known case of the complex plane, was considered in [4] in the framework of Clifford analysis. By the nature of the given construction, which is genuinely cartesian, this approach lead to geometric constraints on the domain Ω. In this paper we consider the problem in a larger class of domains, by a spherical approach. Starting from a real-valued function u, and singling out the radial direction, we explicitly construct a harmonic function of the form w = e r v, with v ∈ span(e θ 1,…, e θ m−1), such that u+w is monogenic, i.e. a null solution of the Dirac operator. As an illustration, the construction is applied to important classes of homogeneous monogenic polynomials and functions. Finally, it is investigated to which extent the approach also applies to the complex plane case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Brackx, R. Delanghe, On harmonic potential fields and the structure of monogenic functions, Zeit. Anal. Anw. 22 (2003), 261–273.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Brackx, B. De Knock, H. De Schepper and D. Eelbode, Some insights on the interplay between the Hilbert transform and conjugate harmonic functions, in: T. Tsimos et al. (eds), Proceedings of the ICNAAM 2005 Conference, Wiley Verlag — VCH, Weinheim, 2005, 915–917.

    Google Scholar 

  3. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Publishers, Boston-London-Melbourne, 1982.

    MATH  Google Scholar 

  4. F. Brackx, R. Delanghe and F. Sommen, On conjugate harmonic functions in Euclidean space, Math. Meth. Appl. Sci. 25 (2002), 1553–1562.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Brackx, H. De Schepper and D. Eelbode, A new Hilbert transform on the unit sphere in ℝm, to appear in Complex Variables and Elliptic Equations.

  6. F. Brackx and N. Van Acker, A conjugate Poisson kernel in Euclidean space, Simon Stevin 67 (1993), 3–14.

    MATH  Google Scholar 

  7. D. Constales, A conjugate harmonic to the Poisson kernel in the unit ball of ℝn, Simon Stevin 62 (1988), 289–291.

    MathSciNet  MATH  Google Scholar 

  8. R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued Functions — A Function Theory for the Dirac Operator, Kluwer Academic Publishers, Dordrecht, 1992.

    Book  MATH  Google Scholar 

  9. J. Gilbert and M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambrigde University Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  10. K. Gürlebeck and W. Sprößig, Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, Wiley, Chichester, 1997.

    MATH  Google Scholar 

  11. V. V. Kravchenko and M. Shapiro, Integral Representations for Spatial Models of Mathematical Physics, Pitman Research Notes in Mathematics Series 351, Longman, Harlow, 1996.

    MATH  Google Scholar 

  12. M. Mitrea, Clifford Wavelets, Singular Integrals and Hardy Spaces, Lecture Notes in Mathematics 1575, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  13. C. A. Nolder, Conjugate harmonic functions and Clifford algebras, J. Math. Anal. Appl. 302 (1) (2005), 137–142.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Qian, Th. Hempfling, A. McIntosh and F. Sommen (eds.), Advances in Analysis and Geometry: New Developments Using Clifford Algebras, Birkhäuser Verlag, Basel-Boston-Berlin, 2004.

    MATH  Google Scholar 

  15. M. Riesz, Clifford Numbers and Spinors, Lecture Series vol.38, Institute for Physical Science and Technology, Maryland, 1958.

    Google Scholar 

  16. R. Rocha-Chávez, M. Shapiro and L. Tovar Sánchez, On the Hilbert operator for α-hyperholomorphic function theory in ℝ2, Complex Var. Theory Appl. 43 (1) (2000), 1–28.

    Article  MATH  Google Scholar 

  17. J. Ryan, Basic Clifford analysis, Cubo Math. Educ. 2 (2000), 226–256.

    MATH  Google Scholar 

  18. J. Ryan and D. Struppa (eds.), Dirac Operators in Analysis, Addison Wesley Longman Ltd., Harlow, 1998.

    MATH  Google Scholar 

  19. M. Shapiro, On the conjugate harmonic functions of M. Riesz-E. Stein-G. Weiss, in: Topics in complex analysis, differential geometry and mathematical physics, St. Konstantin, 1996, 8–32, World Sci. Publishing, River Edge, NJ, 1997.

    Google Scholar 

  20. E. Stein and G. Weiss, On the theory of harmonic functions of several variables, Part I: The theory of H p spaces, Acta Math. 103 (1960), 25–62.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Brackx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brackx, F., De Schepper, H. Conjugate Harmonic Functions in Euclidean Space: a Spherical Approach. Comput. Methods Funct. Theory 6, 165–182 (2006). https://doi.org/10.1007/BF03321122

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321122

En]Keywords

2000 MSC

Navigation