Advertisement

Notes on Certain Star-Shift Invariant Subspaces

  • John R. Akeroyd
  • Kristi Karber
Article
  • 24 Downloads

Abstract

Our work addresses the question: for which (infinite) Blaschke products B does the star-shift invariant subspace K b:= H 2(D) Θ BH 2(D) contain a (non-trivial) function with a non-trivial singular inner factor? In the case that the zeros of B have only finitely many accumulation points w 1,w 2, …, w n in T, a recent paper shows that, for an affirmative answer, there necessarily exist k, 1 ≤ kn, and a subsequence of the zeros of B that converges tangentially to w k on “both sides” of w k. One of the results in this article improves upon this theorem. And, currently, the only examples of Blaschke products in the literature that are shown to yield an affirmative answer are those that have a proper factor b that satisfies b(D) ≠ D. We produce many examples here that have no such factor.

Key Words

backward shift inner function 

2000 MSC

30H05 47B38 49J20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Akeroyd, D. Khavinson and H. S. Shapiro, Weak compactness in certain star-shift invariant subspaces, J. Funct. Anal. 202 (2003), 98–122.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J. A. Cima and W. T. Ross, The Backward Shift on the Hardy Space, Mathematical Surveys and Monographs, 79. American Mathematical Society, Providence, RI, 2000.Google Scholar
  3. 3.
    R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier 20 (1970), 37–76.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.MATHGoogle Scholar
  5. 5.
    K. M. Dyakonov, Kernels of Töplitz operators via Bourgain’s factorization theorem, J. Funct. Anal. 170 (2000), 93–106.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    K. M. Dyakonov, Zero sets and multiplier theorems for star-invariant subspaces, J. Anal. Math. 86 (2002), 247–269.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1982.Google Scholar
  8. 8.
    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.MATHGoogle Scholar
  9. 9.
    N. K. Nikolskii, Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.CrossRefGoogle Scholar

Copyright information

© Heldermann  Verlag 2004

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArkansasFayettevilleUSA

Personalised recommendations