Drug Safety

, Volume 35, Supplement 1, pp 3–20 | Cite as

A Review of Pharmacogenetics of Adverse Drug Reactions in Elderly People

  • Maurizio Cardelli
  • Francesca Marchegiani
  • Andrea Corsonello
  • Fabrizia Lattanzio
  • Mauro Provinciali
Review Article


Older adults are more susceptible to the prevalence of therapeutic failure and adverse drug reactions (ADRs). Recent advances in genomic research have shed light on the crucial role of genetic variants, mainly involving genes encoding drug-metabolizing enzymes, drug transporters and genes responsible for a compound’s mechanism of action, in driving different treatment responses among individuals, in terms of therapeutic efficacy and safety. The interindividual variations of these genes may account for the differences observed in drug efficacy and the appearance of ADRs in elderly people. The advent of whole genome mapping techniques has allowed researchers to begin to characterize the genetic components underlying serious ADRs. The identification and validation of these genetic markers will enable the screening of patients at risk of serious ADRs and to establish personalized treatment regimens.

The aim of this review was to provide an update on the recent developments in geriatric pharmacogenetics in clinical practice by reviewing the available evidence in the PubMed database to September 2012. A Pubmed search was performed (years 1999–2012) using the following two search strategies: (‘pharmacogenomic’ OR ‘pharmacogenetic ’) AND (‘geriatric’ or ‘elderly ’) AND ‘adverse drug reactions’; [gene name] AND (‘geriatric’ or ‘elderly ’) AND ‘adverse drug reactions’, in which the gene names were those contained in the Table of Pharmacogenomic Biomarkers in Drug Labels published online by the US Food and Drug Administration (http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm). Reference lists of included original articles and relevant review articles were also screened. The search was limited to studies published in the English language.


Clopidogrel Adverse Drug Reaction Rivastigmine Abacavir Galantamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McLean AJ, Le Couter DG. Aging biology and geriatric clinical pharmacology. Pharmacol Rev 2004; 56: 163–84PubMedCrossRefGoogle Scholar
  2. 2.
    Atkin PA, Veitch PC, Veitch EM, et al. The epidemiology of serious adverse drug reactions among the elderly. Drugs Aging 1999; 14 (2): 141–52PubMedCrossRefGoogle Scholar
  3. 3.
    Obreli Neto PR, Nobili A, de Lyra Júnior DP, et al. Incidence and predictors of adverse drug reactions caused by drug-drug interactions in elderly outpatients: a prospective cohort study. J Pharm Pharmaceut Sci 2012; 15 (2): 332–43 http://www.cspsCanada.org Google Scholar
  4. 4.
    Routledge PA, O’Mahony MS, Woodhouse KW. Adverse drug reactions in elderly patients. Br J Clin Pharmacol 2004 Feb; 57 (2): 121–6PubMedCrossRefGoogle Scholar
  5. 5.
    Onder G, Pedone C, Landi F, et al. Adverse drug reactions as cause of hospital admissions: results from the Italian Group of Pharmacoepidemiology in the Elderly (GIFA). J Am Geriatr Soc 2002 Dec; 50 (12): 1962–8PubMedCrossRefGoogle Scholar
  6. 6.
    Ruiter R, Visser LE, Rodenburg EM, et al. Adverse drug reaction-related hospitalizations in persons aged 55 years and over: a population-based study in the Netherlands. Drugs Aging 2012 Mar; 29 (3): 225–32PubMedCrossRefGoogle Scholar
  7. 7.
    Tangiisuran B, Davies JG, Wright JE, et al. Adverse drug reactions in a population of hospitalized very elderly patients. Drugs Aging 2012 Aug; 29 (8): 669–79PubMedGoogle Scholar
  8. 8.
    Hofer-Dueckelmann C, Prinz E, Beindl W, et al. Adverse drug reactions (ADRs) associated with hospital admissions -elderly female patients are at highest risk. Int J Clin Pharmacol Ther 2011 Oct; 49 (10): 577–86PubMedGoogle Scholar
  9. 9.
    Conforti A, Costantini D, Zanetti F, et al. Adverse drug reactions in older patients: an Italian observational prospective hospital study. Drug Healthc Patient Saf 2012; 4: 75–80PubMedCrossRefGoogle Scholar
  10. 10.
    Scott IA, Gray LC, Martin JH, et al. Effects of a drug minimization guide on prescribing intentions in elderly persons with polypharmacy. Drugs Aging 2012; 29: 659–67PubMedGoogle Scholar
  11. 11.
    Beutler E, Dern RJ, Flanagan CL, et al. The hemolytic effect of primaquine. VII. Biochemical studies of drugsensitive erythrocytes. J Lab Clin Med 1955; 45: 286–95PubMedGoogle Scholar
  12. 12.
    Wilke RA, Lin DW, Roden DM, et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 2007; 6: 904–16PubMedCrossRefGoogle Scholar
  13. 13.
    American Association of Pharmaceutical Scientists. Pharmacogenomics (PGx) Focus Group. https://www.aapsj.org/inside/focus_groups/PGX/index.asp. [Accessed 2011 Sep 9]
  14. 14.
    Note for guidance on definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. EMEA/CHMP/ICH/437986/ 2006. November 2007 from the ICH Topic E15 Definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002880.pdf
  15. 15.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286 (5439): 487–91PubMedCrossRefGoogle Scholar
  16. 16.
    Pirazzoli A, Recchia G. Pharmacogenetics and pharmacogenomics: are they still promising? Pharmacol Res 2004 Apr; 49 (4): 357–61PubMedCrossRefGoogle Scholar
  17. 17.
    Lee KC, Ma JD, Kuo GM. Pharmacogenomics: bridging the gap between science and practice. J Am Pharm Assoc (2003) 2010 Jan–Feb; 50 (1): e1–14; quiz e15–17Google Scholar
  18. 18.
    Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab 2011 Jun; 12 (5): 487–97PubMedCrossRefGoogle Scholar
  19. 19.
    Goodman LS, Gilman A, Brunton LL, et al. Goodman & Gilman’s thepharmacological basis of therapeutics. 11th ed. McGraw-Hill, New York City, U.S. 2006Google Scholar
  20. 20.
    Singh D, Kashyap A, Pandey RV, et al. Novel advances in cytochrome P450research. Drug Discov Today 2011 Sep; 16 (17–18): 793–9PubMedCrossRefGoogle Scholar
  21. 21.
    Nelson DR, Zeldin DC, Hoffman SM, et al. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, includingnomenclature recommendations for genes, pseudogenes and alternative-splicevariants. Pharmacogenetics 2004 Jan; 14 (1): 1–18PubMedCrossRefGoogle Scholar
  22. 22.
    Ingelman-Sundberg M, Sim SC, Gomez A, et al. Influence ofcytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007 Dec; 116 (3): 496–526PubMedCrossRefGoogle Scholar
  23. 23.
    Cacabelos R. Pharmacogenomics and therapeutic strategies for dementia. Expert Rev Mol Diagn 2009 Sep; 9 (6): 567–611PubMedCrossRefGoogle Scholar
  24. 24.
    Loveman E, Green C, Kirby J, et al. The clinical and costeffectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease. Health Technol Assess 2006 Jan; 10 (1): iii–iv, ix–xi, 1–160PubMedGoogle Scholar
  25. 25.
    Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil inpatients with Alzheimer disease. Neurology 2009 Sep; 73 (10): 761–7PubMedCrossRefGoogle Scholar
  26. 26.
    Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics 2011 Apr; 21 (4): 225–30PubMedGoogle Scholar
  27. 27.
    Chianella C, Gragnaniello D, Maisano Delser P, et al. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol 2011 Nov; 67 (11): 1147–57PubMedCrossRefGoogle Scholar
  28. 28.
    Santoro A, Siviero P, Minicuci N, et al. Effects of donepezil, galantamine and rivastigmine in 938 Italian patients with Alzheimer’s disease: a prospective, observational study. CNS Drugs 2010 Feb; 24 (2): 163–76PubMedCrossRefGoogle Scholar
  29. 29.
    Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993 Dec; 90 (24): 11825–9PubMedCrossRefGoogle Scholar
  30. 30.
    Kleine-Brueggeney M, Musshoff F, Stuber F, et al. Pharmacogenetics in palliative care. Forensic Sci Int 2010 Dec; 203 (1—3): 63–70PubMedCrossRefGoogle Scholar
  31. 31.
    Schwarz UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Investig 2003; 33 Suppl. 2: 23–30CrossRefGoogle Scholar
  32. 32.
    Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 2005; 77: 1–16PubMedCrossRefGoogle Scholar
  33. 33.
    Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999 Feb; 353 (9154): 717–9PubMedCrossRefGoogle Scholar
  34. 34.
    Kamali F, Khan TI, King BP, et al. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 2004 Mar; 75 (3): 204–12PubMedCrossRefGoogle Scholar
  35. 35.
    Shikata E, Ieiri I, Ishiguro S, et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX,and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004 Apr; 103 (7): 2630–5PubMedCrossRefGoogle Scholar
  36. 36.
    Rane A, Lindh JD. Pharmacogenetics of anticoagulants. Hum Genomics Proteomics 2010 Sep; 754919Google Scholar
  37. 37.
    Seripa D, Paroni G, Urbano M, et al. Pharmacogenetics in older people: what we know and what we need to know. J Nephrol 2012; 25 Suppl. 19: 38–47CrossRefGoogle Scholar
  38. 38.
    Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulationrelated outcomes during warfarin therapy. JAMA 2002 Apr; 287 (13): 1690–8PubMedCrossRefGoogle Scholar
  39. 39.
    Wadelius M, Chen LY, Lindh JD, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009; 113 (4): 784–92PubMedCrossRefGoogle Scholar
  40. 40.
    Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352 (22): 2285–93PubMedCrossRefGoogle Scholar
  41. 41.
    Millican EA, Lenzini PA, Milligan PE, et al. Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood 2007 Sep; 110 (5): 1511–5PubMedCrossRefGoogle Scholar
  42. 42.
    Lenzini PA, Grice GR, Milligan PE, et al. Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedicpatients. J Thromb Haemost 2008 Oct; 6 (10): 1655–62PubMedCrossRefGoogle Scholar
  43. 43.
    International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360 (8): 753–64PubMedCrossRefGoogle Scholar
  44. 44.
    Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics 2010; 11 (4): 493–6PubMedCrossRefGoogle Scholar
  45. 45.
    Pautas E, Moreau C, Gouin-Thibault I, et al. Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther 2010; 87 (1): 57–64PubMedCrossRefGoogle Scholar
  46. 46.
    Moreau C, Pautas E, Gouin-Thibault I, et al. Predicting the warfarin maintenance dose in elderly inpatients at treatment initiation: accuracy of dosing algorithms incorporating or not VKORC1/CYP2C9 genotypes. J Thromb Haemost 2011; 9 (4): 711–8PubMedCrossRefGoogle Scholar
  47. 47.
    Kovac MK, Rakicevic LB, Kusic-Tisma JS, et al. Pharmacogenetic tests could be helpful in predicting of VKA maintenance dose in elderly patients at treatment initiation. J Thromb Thrombolysis 2012 Jul 6. [Epub ahead of print]Google Scholar
  48. 48.
    Pilotto A, Franceschi M, Vitale DF, et al. Upper gastrointestinal symptoms and therapies in elderly out-patients, users of non-selective NSAIDs or coxibs. Aliment Pharmacol Ther 2005; 22 (2): 147–55PubMedCrossRefGoogle Scholar
  49. 49.
    Pilotto A, Seripa D, Franceschi M, et al. Genetic susceptibility to nonsteroidal anti-inflammatory drug-related gastroduodenal bleeding: role of cytochrome P450 2C9 polymorphisms. Gastroenterology 2007; 133 (2): 465–71PubMedCrossRefGoogle Scholar
  50. 50.
    Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci 2004; 25: 193–200PubMedCrossRefGoogle Scholar
  51. 51.
    Klotz U. Clinical impact of CYP2C19 polymorphism on theaction of proton pump inhibitors: a review of a special problem. Int J Clin Pharmacol Ther 2006; 44 (7): 297–302PubMedGoogle Scholar
  52. 52.
    Singh G, Saxena N, Aggarwal A, et al. Cytochrome p450 polymorphism as a predictor of ovarian toxicity to pulse cyclophosphamide in systemic lupus erythematosus. J Rheumatol 2007; 34: 731–3PubMedGoogle Scholar
  53. 53.
    Desta Z, Zhao X, Shin JG, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 2002; 41: 913–58PubMedCrossRefGoogle Scholar
  54. 54.
    Sim SC, Risinger C, Dahl ML, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006 Jan; 79 (1): 103–13PubMedCrossRefGoogle Scholar
  55. 55.
    Furuta T, Shirai N, Watanabe F, et al. Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin Pharmacol Ther 2002 Oct; 72 (4): 453–60PubMedCrossRefGoogle Scholar
  56. 56.
    Kawamura M, Ohara S, Koike T, et al. The effects of lansoprazole on erosive reflux oesophagitis are influenced by CYP2C19 polymorphism. Aliment Pharmacol Ther 2003; 17: 965–73PubMedCrossRefGoogle Scholar
  57. 57.
    Thjodleifsson B. Treatment of acid-related diseases in the elderly with emphasis on the use of proton pump inhibitors. Drugs Aging 2002; 19 (12): 911–27PubMedCrossRefGoogle Scholar
  58. 58.
    Ishizawa Y, Yasui-Furukori N, Takahata T, et al. The effect of aging on the relationship between the cytochrome P450 2C19 genotype and omeprazole pharmacokinetics. Clin Pharmacokinet 2005; 44 (11): 1179–89PubMedCrossRefGoogle Scholar
  59. 59.
    Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 2010; 304 (16): 1821–30PubMedCrossRefGoogle Scholar
  60. 60.
    Fuster V, Sweeny JM. Clopidogrel and the reducedfunction CYP2C19 genetic variant: a limited piece of the overall therapeutic puzzle. JAMA 2010; 304 (16): 1839–40PubMedCrossRefGoogle Scholar
  61. 61.
    Price MJ, Murray SS, AngiolilloDJ, et al. Influence of genetic polymorphisms on the effect of high- and standard-dose clopidogrel after percutaneous coronary intervention: the GIFT (Genotype Information and Functional Testing) study. J Am Coll Cardiol 2012 May; 59 (22): 1928–37PubMedCrossRefGoogle Scholar
  62. 62.
    Lewis JP, Shuldiner AR. Paraoxonase 1 Q192R variant and clopidogrel efficacy: fact or fiction? Circ Cardiovasc Genet 2012 Apr; 5 (2): 153–5PubMedCrossRefGoogle Scholar
  63. 63.
    Kreutz RP, Nystrom P, Kreutz Y, et al. Influence of paraoxonase-1 Q192R and cytochrome P450 2C19 polymorphisms on clopidogrel response. Clin Pharmacol 2012; 4: 13–20PubMedGoogle Scholar
  64. 64.
    Reny JL, Combescure C, Daali Y, et al., PON1 Meta-Analysis Group. Influence of the paraoxonase-1 Q192R genetic variant on clopidogrel responsiveness and recurrent cardiovascular events: a systematic review and metaanalysis. J Thromb Haemost 2012 Jul; 10 (7): 1242–51PubMedCrossRefGoogle Scholar
  65. 65.
    Lescai F, Marchegiani F, Franceschi C. PON1 is a longevity gene: results of a meta-analysis. Ageing Res Rev 2009 Oct; 8 (4): 277–84PubMedCrossRefGoogle Scholar
  66. 66.
    Marchegiani F, Spazzafumo L, Provinciali M, et al. Paraoxonase2 C311S polymorphism and low levels of HDL contribute to a higher mortality risk after acute myocardial infarction in elderly patients. Mol Genet Metab 2009 Nov; 98 (3): 314–8PubMedCrossRefGoogle Scholar
  67. 67.
    Marchegiani F, Spazzafumo L, Cardelli M, et al. Paraoxonase-1 55 LL genotype is associated with no STelevation myocardial infarction and with high levels of myoglobin. J Lipids 2012; 2012: 601796PubMedGoogle Scholar
  68. 68.
    Marchegiani F, Marra M, Olivieri F, et al. Paraoxonase 1: genetics and activities during aging. Rejuvenation Res 2008 Feb; 11 (1): 113–27PubMedCrossRefGoogle Scholar
  69. 69.
    Steimer W, Zopf K, von Amelunxen S, et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–85PubMedCrossRefGoogle Scholar
  70. 70.
    Wilke RA, Ramsey LB, Johnson SG, et al., Clinical Pharmacogenomics Implementation Consortium (CPIC). The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 2012 Jul; 92 (1): 112–7PubMedCrossRefGoogle Scholar
  71. 71.
    Backman JT, Kyrklund C, Neuvonen M, et al. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 2002 Dec; 72 (6): 685–91PubMedCrossRefGoogle Scholar
  72. 72.
    Chasman DI, Posada D, Subrahmanyan L, et al. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004; 291 (23): 2821–7PubMedCrossRefGoogle Scholar
  73. 73.
    Medina MW, Gao F, Ruan W, et al. Alternative splicing of 3-hydroxy-3-methylglutaryl coenzymeA reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation 2008; 118 (4): 355–62PubMedCrossRefGoogle Scholar
  74. 74.
    Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic druguptake. Pharmacol Rev 2011 Mar; 63 (1): 157–81PubMedCrossRefGoogle Scholar
  75. 75.
    Akao H, Polisecki E, Kajinami K, et al. Genetic variation at the SLCO1B1 gene locus and low density lipoprotein cholesterol lowering response to pravastatin in the elderly. Atherosclerosis 2012; 220 (2): 413–7PubMedCrossRefGoogle Scholar
  76. 76.
    SEARCH Collaborative Group, Link E, Parish S, et al. SLCO1B1 variants and statin-inducedmyopathy — a genomewide study. N Engl J Med 2008 Aug; 359 (8): 789–99PubMedCrossRefGoogle Scholar
  77. 77.
    Voora D, Shah SH, Spasojevic I, et al. TheSLCO1B1*5 genetic variant is associated with statin-induced side effects. J AmColl Cardiol 2009 Oct; 54 (17): 1609–16CrossRefGoogle Scholar
  78. 78.
    Brunham LR, Lansberg PJ, Zhang L, et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associatedwith simvastatin and atorvastatin. Pharmacogenomics J 2012 Jun; 12 (3): 233–7PubMedCrossRefGoogle Scholar
  79. 79.
    Unützer J. Clinical practice. Late-life depression. N Engl J Med 2007; 357 (22): 2269–75PubMedCrossRefGoogle Scholar
  80. 80.
    Durham LK, Webb SM, Milos PM, et al. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl) 2004 Aug; 174 (4): 525–9CrossRefGoogle Scholar
  81. 81.
    Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996 Jun; 66 (6): 2621–4PubMedCrossRefGoogle Scholar
  82. 82.
    Gerretsen P, Pollock BG. Pharmacogenetics and the serotonin transporter in late-life depression. Expert Opin Drug Metab Toxicol 2008 Dec; 4 (12): 1465–78PubMedCrossRefGoogle Scholar
  83. 83.
    Hu XZ, Lipsky RH, Zhu G, et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 2006 May; 78 (5): 815–26PubMedCrossRefGoogle Scholar
  84. 84.
    Pollock BG, Ferrell RE, Mulsant BH, et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000 Nov; 23 (5): 587–90PubMedCrossRefGoogle Scholar
  85. 85.
    Lotrich FE, Pollock BG, Kirshner M, et al. Serotonin transporter genotype interacts with paroxetine plasma levels to influence depression treatment response in geriatric patients. J Psychiatry Neurosci 2008 Mar; 33 (2): 123–30PubMedGoogle Scholar
  86. 86.
    Hu XZ, Rush AJ, Charney D, et al. Association between a functional serotonin transporter promoter polymorphism and citalopram treatment in adult outpatients with major depression. Arch GenPsychiatry 2007 Jul; 64 (7): 783–92CrossRefGoogle Scholar
  87. 87.
    Mrazek DA, Rush AJ, Biernacka JM, et al. SLC6A4 variation and citalopram response. Am J Med Genet B Neuropsychiatr Genet 2009 Apr; 150B (3): 341–51PubMedCrossRefGoogle Scholar
  88. 88.
    Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 2011 Sep; 12 (9): 1321–36PubMedCrossRefGoogle Scholar
  89. 89.
    Scartozzi M, Loretelli C, Berardi R, et al. Phase II study of pharmacogenetic-tailored therapy in elderly colorectal cancer patients. Dig Liver Dis 2012; 44 (1): 74–9PubMedCrossRefGoogle Scholar
  90. 90.
    Chaplin DD. Overview of the immune response. J Allergy Clin Immunol 2010 Feb; 125 (2 Suppl. 2): S3–23PubMedCrossRefGoogle Scholar
  91. 91.
    Naumova E, Ivanova M, Pawelec G. Immunogenetics of ageing. Int J Immunogenet 2011; 38 (5): 373–81PubMedCrossRefGoogle Scholar
  92. 92.
    Nedorost ST, Stevens SR. Diagnosis and treatment of allergic skin disorders in the elderly. Drugs Aging 2001; 18 (11): 827–35PubMedCrossRefGoogle Scholar
  93. 93.
    Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 2004; 428: 486PubMedCrossRefGoogle Scholar
  94. 94.
    Man CB, Kwan P, Baum L, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 2007; 48: 1015–8PubMedCrossRefGoogle Scholar
  95. 95.
    Locharernkul C, Loplumlert J, Limotai C, et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with the HLA-B*1502 allele in a Thai population. Epilepsia 2008; 49: 2087–91PubMedCrossRefGoogle Scholar
  96. 96.
    Mehta TY, Prajapati LM, Mittal B, et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J Dermatol Venereol Leprol 2009; 75: 579–82PubMedCrossRefGoogle Scholar
  97. 97.
    Kaniwa N, Saito Y, Aihara M, et al. JSAR research group HLA -B locus in Japaneses patients treated with antiepileptic or antimicrobial agents. Pharmacogenomics 2008; 9: 1617–22PubMedCrossRefGoogle Scholar
  98. 98.
    Lonjou C, Thomas L, Borot N, et al. RegiSCAR Group A marker for Stevens-Johnson syndrome: ethnicity matters. Pharmacogenomics J 2006; 6: 265–8PubMedGoogle Scholar
  99. 99.
    Kuehn BM. FDA: epilepsy drugs may carry skin risks for Asians. JAMA 2008; 300 (24): 2845PubMedCrossRefGoogle Scholar
  100. 100.
    Hung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16 (4): 297–306PubMedCrossRefGoogle Scholar
  101. 101.
    McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011; 364 (12): 1134–43PubMedCrossRefGoogle Scholar
  102. 102.
    Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2011; 20 (5): 1034–41PubMedCrossRefGoogle Scholar
  103. 103.
    Kaniwa N, Saito Y, Aihara M, et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 2010; 51 (12): 2461–5PubMedCrossRefGoogle Scholar
  104. 104.
    Ikeda H, Takahashi Y, Yamazaki E, et al. HLA class I markers in Japanese patients with carbamazepineinduced cutaneous adverse reactions. Epilepsia 2010; 51 (2): 297–300PubMedCrossRefGoogle Scholar
  105. 105.
    Hung SI, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 2005; 102: 4134–9PubMedCrossRefGoogle Scholar
  106. 106.
    Tassaneeyakul W, Jantararoungtong T, Chen P, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics 2009; 19: 704–9PubMedCrossRefGoogle Scholar
  107. 107.
    Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002; 359: 727–32PubMedCrossRefGoogle Scholar
  108. 108.
    Hetherington S, Hughes AR, Mosteller M, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002; 359: 1121–2PubMedCrossRefGoogle Scholar
  109. 109.
    Hughes AR, Mosteller M, Bansal AT, et al. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 2004; 5: 203–11PubMedCrossRefGoogle Scholar
  110. 110.
    Mallal S, Phillips E, Carosi G, et al. PREDICT-1 Study Team HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 2008; 358: 568–79PubMedCrossRefGoogle Scholar
  111. 111.
    Daly AK, Donaldson PT, Bhatnagar P, et al., DILIGEN Study; International SAE Consortium. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due toflucloxacillin. Nat Genet 2009 Jul; 41 (7): 816–9PubMedCrossRefGoogle Scholar
  112. 112.
    Singer JB, Lewitzky S, Leroy E, et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 2010 Aug; 42 (8): 711–4PubMedCrossRefGoogle Scholar
  113. 113.
    Alfirevic A, Gonzalez-Galarza F, Bell C, et al. In silico analysis of HLA associations with drug-induced liver injury: use of a HLA-genotyped DNA archive from healthy volunteers. Genome Med 2012 Jun; 4 (6): 51PubMedCrossRefGoogle Scholar
  114. 114.
    Marques SC, Ikediobi ON. The clinical application of UGT1A1 pharmacogenetic testing: gene-environment interactions. Hum Genomics 2010 Apr; 4 (4): 238–49PubMedGoogle Scholar
  115. 115.
    Strassburg CP. Pharmacogenetics of Gilbert’s syndrome. Pharmacogenomics 2008; 9: 703–15PubMedCrossRefGoogle Scholar
  116. 116.
    Perera MA, Innocenti F, Ratain MJ. Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy 2008; 28: 755–68PubMedCrossRefGoogle Scholar
  117. 117.
    Kiang TK, Ensom MH, Chang TK. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 2005; 106: 97–132PubMedCrossRefGoogle Scholar
  118. 118.
    Sim SC, Ingelman-Sundberg M. Pharmacogenomic biomarkers: new tools in current and future drug therapy. Trends Pharmacol Sci 2011 Feb; 32 (2): 72–81PubMedCrossRefGoogle Scholar
  119. 119.
    Zhou S. Clinical pharmacogenomics of thiopurine S-methyltransferase. Curr Clin Pharmacol 2006 Jan; 1 (1): 119–28PubMedCrossRefGoogle Scholar
  120. 120.
    Sahasranaman S, Howard D, Roy S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 2008 Aug; 64 (8): 753–67PubMedCrossRefGoogle Scholar
  121. 121.
    Aliabadi AZ, Zuckermann AO, Grimm M. Immunosuppressive therapy in older cardiac transplant patients. Drugs Aging 2007; 24 (11): 913–32PubMedCrossRefGoogle Scholar
  122. 122.
    Mishra PJ, Bertino JR. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics. 2009 Mar; 10 (3): 399–416PubMedCrossRefGoogle Scholar
  123. 123.
    Bertino JR, Banerjee D, Mishra PJ. Pharmacogenomics of microRNA: a miRSNP towards individualized therapy. Pharmacogenomics. 2007 Dec; 8 (12): 1625–7PubMedCrossRefGoogle Scholar
  124. 124.
    Mishra PJ, Humeniuk R, Mishra PJ, et al. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A. 2007 Aug 14; 104 (33): 13513–8PubMedCrossRefGoogle Scholar
  125. 125.
    Mishra PJ, Mishra PJ, Banerjee D, et al. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics. Cell Cycle 2008 Apr 1; 7 (7): 853–8PubMedCrossRefGoogle Scholar
  126. 126.
    Garofalo M, Condorelli G, Croce CM. MicroRNAs in diseases and drug response. Curr Opin Pharmacol 2008 Oct; 8 (5): 661–7PubMedCrossRefGoogle Scholar
  127. 127.
    Wu Y, Xiao Y, Ding X, et al. A miR-200b/200c/429-binding site polymorphism in the 30 untranslated region of the AP-2a gene is associated with cisplatin resistance. PLoS ONE 2011; 6 (12): e29043PubMedCrossRefGoogle Scholar
  128. 128.
    Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet 2010; 11: 241–6PubMedCrossRefGoogle Scholar
  129. 129.
    Paula Careta F, Paneto GG. Recent patents on highthroughput single nucleotide polimorphism (SNP)genotyping methods. Recent Pat DNA Gene Seg 2012; 6: 122–6CrossRefGoogle Scholar
  130. 130.
    Fernandez-Rozadilla C, Cazier JB, Moreno V, et al. Pharmacogenomics in colorectal cancer: a genome-wide association study to predict toxicity after 5-fluorouracil or FOLFOX administration. Pharmacogenomics J 2012 Feb 7 (Epub ahead of print)Google Scholar
  131. 131.
    Baldwin RM, Owzar K, Zembutsu H, et al. A genome-wide association study identifies novel loci for paclitaxelinduced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res 2012 Sep 15; 18 (18): 5099–109PubMedCrossRefGoogle Scholar
  132. 132.
    Clark SL, Adkins DE, Aberg K, et al. Pharmacogenomic study of side-effects for antidepressant treatment options in STAR*D. Psychol Med 2012 Jun; 42 (6): 1151–62PubMedCrossRefGoogle Scholar
  133. 133.
    Trompet S, de Craen AJ, Postmus I, et al. Replication of LDL GWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses. BMC Med Genet 2011 Oct 6; 12: 131PubMedCrossRefGoogle Scholar
  134. 134.
    Takeuchi F, McGinnis R, Bourgeois S, et al. A genomewide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009 Mar; 5 (3): e1000433PubMedCrossRefGoogle Scholar
  135. 135.
    Yang JJ, Plenge RM. Genomic technology applied to pharmacological traits. JAMA 2011 Aug 10; 306 (6): 652–3PubMedCrossRefGoogle Scholar
  136. 136.
    Fellay J, Thompson AJ, Ge D, et al. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 2010 Mar 18; 464 (7287): 405–8PubMedCrossRefGoogle Scholar
  137. 137.
    GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group, Wellcome Trust Case Control Consortium 2, Zhou K, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 2011 Feb; 43 (2): 117–20PubMedCrossRefGoogle Scholar
  138. 138.
    Nelson MR, Bacanu SA, Mosteller M, et al. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J 2009 Feb; 9 (1): 23–33PubMedCrossRefGoogle Scholar
  139. 139.
    Schildcrout JS, Denny JC, Bowton E, et al. Optimizing drug outcomes through pharmacogenetics: a case for preemptive genotyping. Clinical Pharmacology & Therapeutics 2012; 92: 235–42CrossRefGoogle Scholar
  140. 140.
    Ng PC, Murray SS, Levy S, et al. An agenda for personalized medicine. Nature 2009 Oct 8; 461 (7265): 724–6PubMedCrossRefGoogle Scholar
  141. 141.
    Tzvetkov M, von Ahsen N. Pharmacogenetic screening for drug therapy: from single gene markers to decision making in the next generation sequencing era. Pathology 2012 Feb; 44 (2): 166–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2012

Authors and Affiliations

  • Maurizio Cardelli
    • 1
  • Francesca Marchegiani
    • 1
  • Andrea Corsonello
    • 2
  • Fabrizia Lattanzio
    • 3
  • Mauro Provinciali
    • 1
  1. 1.Advanced Technology Center for Aging ResearchScientific Technological Area, IRCCS-INRCAAnconaItaly
  2. 2.Unit of Geriatric Pharmacoepidemiology, IRCCS-INRCACosenzaItaly
  3. 3.Scientific Direction, IRCCS-INRCAAnconaItaly

Personalised recommendations