Advertisement

Welding in the World

, Volume 52, Issue 9–10, pp 75–81 | Cite as

Mechanical Properties of Friction Stir Welded Carbon Steel Joints — Friction Stir Welding with and without Transformation

  • H. Fujii
  • L. Cui
  • K. Nakata
  • K. Nogi
Research Supplement

Abstract

Low temperature friction stir welding (including below A1 point) was successful for three types of carbon steels with different carbon contents (IF steel, S12C, S35C). For all the carbon steels, the strength of the FSW joints increased when compared to that of the normal structure (ferrite + pearlite) of base metal. Compared with IF steel, the microstructures and mechanical properties of the carbon steel joints are significantly affected by the welding conditions due to the phase transformations. For the S12C steel, the welding produces a ferrite-pearlite structure, and the strength slightly increases with the increasing welding speed (decreasing the heat input) due to the refined microstructure. For the S35C steel, under the conditions exceeding the lower critical cooling rate, martensite was formed, resulting in a significantly increased joint strength; while under the conditions when martensite is not formed, the strength of the joint increased with the increasing welding speed (decreasing the heat input) due to the refined microstructures. Thus, friction stir welding enables us to control both the maximum temperature and the cooling rate in order to produce higher strength joints.

IIW-Thesaurus Keywords

Carbon steels Friction stir welding Friction welding Phase diagrams Reference lists Steels Unalloyed steels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Temple-Smith P., Dawes C.J., International Patent Application No. PCT/GB92/02203.Google Scholar
  2. [2]
    Dawes C.J., Thomas W.M., Weld. J., 1996, 75, pp. 41–45.Google Scholar
  3. [3]
    Park S.H.C., Sato Y.S., Kokawa H., Scripta Mater., 2003, 49, pp. 161–166.CrossRefGoogle Scholar
  4. [4]
    Park H.S., Kimura T., Murakami T., Nagano Y., Nakata K., Ushio M., Mater. Sci. Eng. A, 2004, 371, pp.160–169.CrossRefGoogle Scholar
  5. [5]
    Thomas W.M., Threadgill P.L., Nicholas E.D., Sci. Technol. Weld. Join., 1999, 4, pp. 365–372.CrossRefGoogle Scholar
  6. [6]
    Lienert T.J., Stellwag W.L., Grimmett B.B., Warke R.W., Weld. J., 2003, 82, pp.1s-9s.Google Scholar
  7. [7]
    Reynolds A.P., Tang W., Posada M., DeLoach J., Sci. Technol. Weld. Join., 2003, 8, pp. 455–460.CrossRefGoogle Scholar
  8. [8]
    Fujii H., Ueji R., Takada Y., Kitahara H., Tsuji N., Nakata K., Nogi K., Mater. Trans., 2006, 47, pp. 239–242.CrossRefGoogle Scholar
  9. [9]
    Fujii H., Cui L., Tsuji N., Maeda M., Nakata K., Nogi K., Mater. Sci. Eng. A, 2006, 429, pp. 50–57.CrossRefGoogle Scholar
  10. [10]
    Ueji R., Fujii H., Cui L., Nishioka A., Kunishige K., Nogi K., Mater. Sci. Eng. A, 2006, 423, pp. 324–330.CrossRefGoogle Scholar
  11. [11]
    Cui L., Fujii H., Tsuji N., Nogi K., Scripta Mater., 2007, 56, pp. 637–640.CrossRefGoogle Scholar
  12. [12]
    Cui L., Fujii H., Tsuji N., Nakata K., Nogi K., Ikeda R., Matsushita M., ISIJ Int., 2007, 47–2, pp. 299–306.CrossRefGoogle Scholar
  13. [13]
    Fujii H., Cui L., Maeda M. Nogi K., Mater. Sci. Eng. A, 2006, 419, pp. 25–31.CrossRefGoogle Scholar
  14. [14]
    Tsuji N., Ito Y., Saito Y., Minamino Y., Scripta Mater., 2002, 47, pp. 893–899.CrossRefGoogle Scholar
  15. [15]
    Colegrove P.A., Shercliff H.R., Sci. Technol. of Weld. Joining, 2003, 8, pp. 360–368.CrossRefGoogle Scholar
  16. [16]
    Fujii H., Takada Y., Tsuji N., Nogi K., 5th Int. Symp. FSW, CD-ROM, 2004.Google Scholar
  17. [17]
    Sato Y.S., Park S.H.C., Kokawa H., Metall. Mater. Trans. A, 2001, 32A, pp. 3033–3042.CrossRefGoogle Scholar
  18. [18]
    Sato Y.S., Urata M., Kokawa H., Ikeda K., Mater. Sci. Eng. A, 2003, 354, pp. 298–305.CrossRefGoogle Scholar
  19. [19]
    Liu H.J., Fujii H., Maeda M., Nogi K., J. Mater. Sci. Lett., 2003, 22, pp. 41–43.CrossRefGoogle Scholar
  20. [20]
    Liu H.J., Fujii H., Maeda M., Nogi K., J. Mater. Sci. Technol., 2004, 20, pp. 103–105.Google Scholar
  21. [21]
    Shindo D.J., Rivera A.R., Murr L.E., J. Mater. Sci. 2002, 37, pp. 4999–5005.CrossRefGoogle Scholar
  22. [22]
    Liu H.J., Fujii H., Nogi K., Mater Sci. Technol., 2004, 20, pp. 399–402.CrossRefGoogle Scholar
  23. [23]
    Fujii H., Kim Y.G., Tsumura T., Komazaki T., Nakata K., Mater. Trans., 2006, 47, pp. 224–232.CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2008

Authors and Affiliations

  • H. Fujii
    • 1
  • L. Cui
    • 1
  • K. Nakata
    • 1
  • K. Nogi
    • 1
  1. 1.Joining and Welding Research InstituteOsaka UniversityJapan

Personalised recommendations