Advertisement

Welding in the World

, Volume 52, Issue 5–6, pp 19–41 | Cite as

Welding of the high Grade Pipeline-Steel X80 and Description of Different Pipeline-Projects

  • S. Felber
Technical Papers

Abstract

Nowadays already a lot of large onshore-projects have been implemented for the steel X80 with, as it seems, fully satisfactory results. The high grade pipeline-steel X80 is discussed in detail in this paper as well as the various projects performed with X80. A lot of money is spent worldwide in finding the right joining process for the circumferential welds of these pipes, and so a worldwide central collection of welding variables and efficient processing could result in a prediction of the mechanical properties and fracture mechanical values out of the data of the preceding joining process, and would save a lot of trial and error and therefore costs. This paper deals with the welding parameters, the consumable types, the heat input of the joining process, preheating and interpass temperatures. The tested materials were the base material, the weld metal, and the heat-affected zone of welds, using different welding processes, as for example manual metal arc welding, gas metal arc welding, gas tungsten arc welding, or submerged arc welding, of the pipeline steel X80 according to API 5L (L 555MB according to OENORM EN 10208–2).

IIW-Thesaurus keywords

Arc welding GMA welding GTA welding Heat affected zone MMA welding Parent material Pipeline steels Pipelines Reference lists Submerged arc welding Weld metal Weld zone 

References

  1. [1]
    Aigmüller G., Schütz H.: Die Entwicklung und das Schweißen hochfester Röhrenstähle, Schweißtechnik, 1985, H. 1, pp. 2–7.Google Scholar
  2. [2]
    Kneißl A., Ortner B., Kleemaier R., Windhager M., Kühlein W.: Thermomechanisch behandelte Stähle, BHM 135, 1990, H. 5, pp. 147–154.Google Scholar
  3. [3]
    Felber S.: Pipelinebau, 1. Auflage, ÖGS Österreichische Gesellschaft für Schweißtechnik, Wien, 2001.Google Scholar
  4. [4]
    Hillenbrand H.G., Kalwa C.: High-strength line pipe for project cost reduction, Europipe GmbH, Ratingen, 2002.Google Scholar
  5. [5]
    Gräf M.K., Hillenbrand H.G., Niederhoff K.A.: Production of large-diameter line pipe and bends for the world’s first long-range pipeline in grade X80 (GRS 550), Europipe GmbH, Ratingen, 1993.Google Scholar
  6. [6]
    Caudhari C., Ritzmann H.P., Wellnitz G., Hillenbrand H.G., Willings V.: German gas pipeline first to use new generation line pipe, Europipe GmbH, Ratingen, 1995.Google Scholar
  7. [7]
    Hillenbrand H.G., Heckmann C.J., Niederhoff K.A.: X80 line pipe for large-diameter high strength pipelines, Europipe GmbH, Ratingen, 2002.Google Scholar
  8. [8]
    Felber S.: Mechanical-technological and fracture mechanical properties of the high grade pipeline-steel X80 with results of different pipeline-projects, Doc. IIW-1894-08 (ex-Doc. XI-881–07), Welding in the World, 2008, vol. 52, No. 5/6, pp. 42–50.CrossRefGoogle Scholar
  9. [9]
    API Spec 5L: Specification for Line Pipe, Ed. April 1995.Google Scholar
  10. [10]
    OENORM EN 10208–2: Stahlrohre für Rohrleitungen für brennbare Medien, Technische Lieferbedingungen, Rohre der Anforderungsklasse B (enthält auch Berichtigung AC:1996), Ausg. 1. April 1997.Google Scholar
  11. [11]
    OENORM EN 10027–2: Bezeichnungssysteme für Stähle, Nummernsystem, Ausg. 1. Dezember 1992.Google Scholar
  12. [12]
    Dormagen D.: Steels for pipes and pipelines, Steel Research 59, 1988, No. 8, pp. 368–374.Google Scholar
  13. [13]
    Kohl G.M.: Construction of On- and Offshore Pipelines out of the Steels X70 and X80, Diploma Thesis, Vienna University of Technology, March 2007.Google Scholar
  14. [14]
    Hillenbrand H.G., Niederhoff Hauck G., Perteneder E., Wellnitz G.: Procedures, considerations for welding X80 line pipe established, Europipe GmbH, Ratingen, 1997.Google Scholar
  15. [15]
    Jansen J.P., Mullie J.P., Amoris E., Jalty P.: Present status, development and qualification of „TSE 550“- grade steel for large-diameter pipelines, Europipe GmbH, Ratingen, 1997.Google Scholar
  16. [16]
    Biermann K., Brühl F., Zschau M., Hillenbrand H.G.: Experiences with site erection and field welding of the pipeline steel X80, Europipe GmbH, Ratingen, 1998.Google Scholar
  17. [17]
    Hillenbrand H.G., Gräf M.K., Kalwa C.: Development and production of high-strength pipeline steels, Europipe GmbH, Ratingen, 2001.Google Scholar
  18. [18]
    Matousu M., Skarda Z., Beder I., Lombardini J., Schuster H.G., Duren C.: Large diameter pipes of steel GRS 550 TM (X80) in the 4th transit gas pipeline in Czechoslovakia, 3R international 26, 1987, 8, pp. 534–543.Google Scholar
  19. [19]
    BlueScope Steel: Roma Looping X80 Pipeline, Australia, 2003.Google Scholar
  20. [20]
    Bacchi L., Barsanti L., Hillenbrand H-G., Muthmann E.: First X80 pipe line section in Italy, Europipe GmbH, Ratingen, 2005.Google Scholar
  21. [21]
    Gräf M.K., Hillenbrand H.G., Niederhoff K.A.: Production and girth welding of submerged-arc welded grade X80 large-diameter line pipe, Europipe GmbH, Ratingen, 1991.Google Scholar
  22. [22]
    Matousu M., Skarda Z., Beder I., Lombardini J., Schuster H.G., Duren C.: Using large diameter pipes of GRS 550 TM (X80) steel in the construction of a transmission gas pipeline, Welding International, 1988, Vol. 2, No. 6, pp. 566–575.CrossRefGoogle Scholar
  23. [23]
    Randall M.D., Gross B.: The Metallurgy and integrity of high strength automatic GMAW girth welds, WTIA/APIA Research Panel 7 Joint Research Seminar Welding of High Strength Thin-Walled Pipelines, Wollongong, Australia, October 26, 1995, paper 5.Google Scholar
  24. [24]
    Haumann W., Koch F.O., Bersch B.: Development and investigation results of X80 pipeline steel, 3R international 25, 1986, 6, pp. 330–333.Google Scholar
  25. [25]
    DIN 17172: Stahlrohre für Fernleitungen für brennbare Flüssigkeiten und Gase, Technische Lieferbedingungen, Ausg. Mai 1978.Google Scholar
  26. [26]
    Gräf M.K., Niederhoff K.A.: Overmatching criterion and manual welding of line pipe in grades >= X70. Europipe GmbH, Ratingen, 1995.Google Scholar
  27. [27]
    Kalwa C., Hillenbrand H.G., Gräf M.K.: High strength steel pipes: New developments and applications, Europipe GmbH, Ratingen, 2002.Google Scholar
  28. [28]
    Boothby P.J.: Pipeline-Schweißen in der Gasindustrie in Großbritannien, Schweiss- und Prüftechnik 53, 1999, 12, pp. 178–181.Google Scholar
  29. [29]
    Boothby P.J.: Pipeline welding in the UK gas industry, Welding and Metal Fabrication 67, 1999, 7, pp. 7–10.Google Scholar
  30. [30]
    Gawlick S., Hauck G., Kiewel G., Sandner G.: Automatisches Schutzgasschweißen an der X80-Ruhrgasleitung Werne-Wetter unter Anwendung des CRC-Verfahrens, DVS-Berichte, Band 155 Deutscher Verlag für Schweißtechnik, Düsseldorf, 1993, pp. 166–170.Google Scholar
  31. [31]
    Miller Welding: Cheyenne Plains pipeline project requires modern welding technology, Appleton, Wisconsin, USA, 2005.Google Scholar
  32. [32]
    Engelmann H., Engel A., Peters P.A., Dueren C., Muesch H.: First use of large-diameter pipes of the steel GRS 550 TM(X80) in a high-pressure pipeline, 3R international 25, 1986, 4, pp. 182–193.Google Scholar
  33. [33]
    Palmer T.: Alaska gas pipeline construction cost risks, TransCanada, June 2004.Google Scholar
  34. [34]
    Fronius.: How to melt a welder’s heart when the mercury plummets way below zero, Wels, 2003.Google Scholar
  35. [35]
    Hillenbrand H.G., Kalwa C., Liessem A.: Technological solutions for ultra-high strength gas pipelines. Europipe GmbH, Ratingen, 2005.Google Scholar
  36. [36]
    Beeson R.: Pipeline welding goes mechanized, Miller Welding, Appleton, Wisconsin, USA, 1999.Google Scholar
  37. [37]
    Hillenbrand H.G., Liessem A., Biermann K., Heckmann C.J., Schwinn V.: Development and production of linepipe steels in grade X100 and X120, Europipe GmbH, Ratingen, 2005.Google Scholar
  38. [38]
    Gräf M.K., Hillenbrand H.G.: High quality line pipe a prerequisite for project cost reduction, Europipe GmbH, Ratingen, 1999.Google Scholar
  39. [39]
    Gräf M.K., Hillenbrand H.G.: Production of large-diameter line pipe — state of the art and future development trends, Europipe GmbH, Ratingen, 1995.Google Scholar
  40. [40]
    Hillenbrand H.G., Amoris E., Niederhoff K.A., Perdrix C., Streißelberger A., Zeislmair U.: Manufacturability of line pipe in grades up to X100 from TN processed plate, Europipe GmbH, Ratingen, 1995.Google Scholar
  41. [41]
    Streisselberger A., Bauer J., Flüss P., Hillenbrand H.G., Cordon P.: High strength steel plates for line pipes in grade up to X100, Europipe GmbH, Ratingen, 1998.Google Scholar
  42. [42]
    Mannucci G., Demofonti G., Barsanti L., Spinelli C.M., Hillenbrand H.G.: Fracture behaviour and defect evaluation of large-diameter, HSLA steels, very high-pressure line pipes, Europipe GmbH, Ratingen, 2000.Google Scholar
  43. [43]
    Demofonti G., Mannucci G., Spinelli C.M., Barsanti L., Hillenbrand H.G.: Large-diameter X100 gas line pipes: Fracture propagation evaluation by full-scale burst test, Europipe GmbH, Ratingen, 2000.Google Scholar
  44. [44]
    Hillenbrand H.G, Liessem A., Knauf G.: Development of large-diameter pipe in grade X100, Europipe GmbH, Ratingen, 2000.Google Scholar
  45. [45]
    Barsanti L., Pozzoli G., Hillenbrand H.G.: Production and field weldability evaluation of X100 line pipe. Europipe GmbH, Ratingen, 2001.Google Scholar
  46. [46]
    Mannucci G., Demofonti G., and Hillenbrand H.G.: Fracture properties of API X100 gas pipeline steels. Europipe GmbH, Ratingen, 2001.Google Scholar
  47. [47]
    Barsanti L., Hillenbrand H.G.: Possible use of new material for high pressure line pipe constructions: The experience of SNAM RETE GAS and EUROPIPE on X100 grade steel, Europipe GmbH, Ratingen, 2002, Proceedings of IPC, The International Pipeline Conference, Calgary, Alberta, Canada, September 2002.Google Scholar
  48. [48]
    Terada Y., Yamashati M., Hara T., Tamehiro H., Ayukawa N.: Development of API X100 UOE line pipe, Nippon Steel Technical Report 72, 1997, pp. 47–52.Google Scholar
  49. [49]
    Demofonti G., Mannucci G., Hillenbrand H.G., Harris D.: Evaluation of the suitability of X100 steel pipes for high pressure gas transportation pipelines full scale test, Europipe GmbH, 2004.Google Scholar
  50. [50]
    Hillenbrand H.G., Liessem A., Biermann K., Heckmann C.J., Schwinn V.: Development of grade X120 pipe material for high pressure gas transportation lines, Europipe GmbH, Ratingen, 2004.Google Scholar
  51. [51]
    Hillenbrand H.-G., Liessem A., Biermann K., Heckmann C.J., Schwinn V.: Development of high strength material and pipe production technology for grade X120 line pipe, Europipe GmbH, 2004.Google Scholar
  52. [52]
    N.N.: Pipeline welding consumables, Böhler Schweißtechnik GmbH, März 2000.Google Scholar
  53. [53]
    N.N.: Quality Welding Filler Metal Products, Sureweld, Pipe Welding Electrodes and Welding Wire, Alloy Rods, ARC, März 1997.Google Scholar
  54. [54]
  55. [55]
  56. [56]
    Böhler Schweisstechnik Österreich GmbH: http://www.boehler-welding.com/german/files/Weldingguide_Linked.pdf, 2006.
  57. [57]
    Böhler Schweisstechnik Österreich GmbH.: http://www.boehler-welding.com/german/files/PIPE_CHI_06.pdf, 2006.
  58. [58]
    ESAB: Pipeline catalogue. www.esab.com/ESABHtml/pdf/pipeline.pdf, 2006.
  59. [59]
    Königshofer H., Bischof R., Perteneder E.: Schweis-szusätze für das Schweissen von Rohrrundnähten im Pipelinebau, Welding filler materials for welding of circumferential seams in pipeline construction. Schweiss- und Prüftechnik, 2000, Vol. 54, 3, pp. 34–40.Google Scholar
  60. [60]
    Königshofer H., Mlekusch J.: Fehler im Zellulosee-lektrodenschweißgut und deren Vermeidung, Schweißblitz 20, 1979.Google Scholar
  61. [61]
    Sommer B., et al.: Stahlrohr Handbuch, 12. Auflage, Vulkan-Verlag, Essen, 1995.Google Scholar
  62. [62]
    Böhler Welding: Wissenswertes für den Schweißer, Böhler Schweißtechnik, Handbuch der Böhler Schweißtechnik, Düsseldorf, Mai 1998.Google Scholar
  63. [63]
    Demofonti G., Mannucci G., Hillenbrand H.G., Harris D.: Suitability evaluation of X100 steel pipes for high pressure gas transportation pipelines by full scale tests, Europipe GmbH, Ratingen, 2003.Google Scholar
  64. [64]
    Böhler Welding: Welding consumables for pipeline construction.Google Scholar
  65. [65]
    Mlekusch J.: Fallnahtschweißen mit basischen Stabelektroden im Rohrleitungsbau, Böhler Schweißtechnik Austria GmbH, Kapfenberg, 1997.Google Scholar
  66. [66]
    Emmerson J.: Pipeline industry looks to new processes for mechanized weld quality. www.magnatech-lp.com/Articles/pipeline.html, January 2000.
  67. [67]
    Smallbone Ch.: The CRC for materials welding and joining and WTIA in partnership, WTIA/APIA Panel 7 Research Seminar, Wollongong, Australia, October 26, 1995, Paper 10.Google Scholar
  68. [68]
    Randall M.D., Gross B.: The metallurgy and integrity of high strength automatic GMAW girth welds, WTIA/APIA Panel 7 Research Seminar, Wollongong, Australia, October 26, 1995, Paper 5.Google Scholar
  69. [69]
    ESAB: Pipelines Welding Handbook. 2006.Google Scholar
  70. [70]
    Blackman S.A., Dorling D.V., Howard R.: High-speed tandem GMAW for pipeline welding, 4th Internat. Pipeline Conference, Calgary, Alberta, Canada, 2002, pp. 517–523.Google Scholar
  71. [71]
    Yapp D., Blackman A.: Recent Development in High Productivity Pipeline Welding. Fronius, 2004.Google Scholar
  72. [72]
    Norrish N., Blackman S.: High integrity welding process for pipeline girth welding, International Conference Pipeline Repairs and In-Service Welding, Wollongong, Australia, March 24–26, 2003, paper 4.Google Scholar
  73. [73]
    Nomura H., Kaneyama K., Katsuki M.: Automatic pipe welding system used in NKK and NK, IIW Doc. XI-697–98.Google Scholar
  74. [74]
    Engindeniz E.: MAG-Orbitalschweißen mit gasgeschützten Fülldrahtelektroden, Schweiß- & Prüftechnik, 1996, 50, 9, pp. 147–150.Google Scholar
  75. [75]
    Crockett D.D., Sim R.G.: The metallurgy and integrity of high strength FCAW girth welds, WTIA/APIA Research Panel 7 Joint Research Seminar Welding of High Strength Thin-Walled Pipelines, Wollongong, Australia, October 26, 1995, paper 4.Google Scholar
  76. [76]
    Felber S.: Rissaufweitung (CTOD) des Pipelinestahles X70 (Grundwekstoff, Schweissgut und Wärmeeinflußzone), Schriftenreihe der TU Wien, Tagungsband Internationale Konferenz ST-W&WP-BM-QM, TU Wien, Österreich, September 22–24, 1997, Band 1, pp. 359–368.Google Scholar
  77. [77]
    Rauch R., Auberger G., Schütz H., Mildner H.: Erfahrungen mit hochfesten TM-gewalzten Feinkornbaustählen beim erstmaligen Einsatz im Druckrohrleitungsbau, Schweißtechnik, 1995, 49, 1, pp. 2–8.Google Scholar
  78. [78]
    Liessem A., Hillenbrand H.G., Kersting T., Oesterlein L., Schoenartz N.: High quality through high end technology on LSAW large diameter pipes, Europipe GmbH, Ratingen, 2005.Google Scholar
  79. [79]
    Gräf M.K., Niederhoff K.A.: Properties of HAZ in two-pass submerged arc welded large-diameter pipe, Europipe GmbH, Ratingen, 2000.Google Scholar
  80. [80]
    Jansen J.P., Coiffier J.C., Thillou V.: How to improve the toughness at low temperature of the longitudinal weld seam of pipes with w.t. < 12.7 mm, Europipe GmbH, Ratingen, 2000.Google Scholar
  81. [81]
    Oesterlein L., Schade A., Biermann K., Brünings S.E.: Höchste Qualität durch den Einsatz digitaler Stromquellen bei der Herstellung Längsnaht UP geschweißter Großrohre, Europipe GmbH, Ratingen, 2005.Google Scholar
  82. [82]
    Folkhard E., Ablasser F., Widowitz H., Schabereiter H.: Neuentwicklung auf dem Gebiet der Pipelineschweißung, BHM 114, 1969, 11, pp. 407–415.Google Scholar
  83. [83]
    Müsch H., Chaudhari V., Hess H., Wellnitz G.: Feld-schweißungen von Pipelines im Sauergaseinsatz, 3R international 29, 1990, 6, pp. 332–338.Google Scholar
  84. [84]
    Ornig H., Starnberger R.: Schweißen von Druckrohrleitungen aus StE 690, Stahl, 1993, 3, pp. 69–71.Google Scholar
  85. [85]
    Knoche E.: Selbstschützende Fülldrahtelektroden für das Schweißen von Großrohrleitungen, Der Praktiker, 1995, 2, pp. 52–57.Google Scholar
  86. [86]
    Trebo A.: Werkstoffkundliche und schweißtechnologische Untersuchungen an Dualphasen- und Duplex-Stählen für den Pipelinebau, Diplomarbeit, TU-Wien, Jänner 2000.Google Scholar
  87. [87]
    Königshofer H.: Das manuelle Schweißen von Rohrrundnähten, November 1990.Google Scholar
  88. [88]
    Königshofer H.: Basisch umhüllte Stabelektrode BÖHLER FOX BVD 85 für die Fallnahtschweißung, Schweißblitz, 1980, 23.Google Scholar
  89. [89]
    Perteneder E., Rabensteiner G., Königshofer H.: Peculiarities of welding high strength large diameter line pipe steels with cellulose- and low hydrogen type electrodes, International Conference on Pipeline and Energy Plant, Piping Fabrication in the the 80’s, Calgary, Alberta, Canada, November 10–13, 1980, pp. 151–158.Google Scholar
  90. [90]
    Perteneder E., Königshofer H., Mlekusch J.: The metallurgy and integrity of high strength MMA girth welds, WTIA/APIA Panel 7, Wollongong, Australia, October 26, 1995, Paper 3.Google Scholar
  91. [91]
    Perteneder E., Königshofer H., Mlekusch J.: Beitrag zum heutigen Stand des Feldschweißens von Großrohren mit Stabelektroden, Schweißtechnik, 1994, 48, H. 1, pp. 2–5.Google Scholar
  92. [92]
    Pomaska H.U.: MAG-Schweißen von Feinkornbaustählen. Sonderdruck der Fa, Linde, 102, Große Schweißtech-nische Tagung, Berlin, 1. Oktober 1982.Google Scholar
  93. [93]
    Knoche E.: Selbstschützende Fülldrahtelektroden für das Schweißen von Großrohrleitungen, Der Praktiker, 1995, Nr. 2, pp. 52–57.Google Scholar
  94. [94]
    Sommer B., et al.: Stahlrohr Handbuch, 12. Auflage, Vulkan-Verlag, Essen, 1995.Google Scholar
  95. [95]
    Ornig H., Starnberge, R.: Schweißen von Druckrohrleitungen aus StE 690, Stahl, 1993, H. 3, pp. 69–71.Google Scholar
  96. [96]
    Bilston K., Dietsch A., Fletcher L.: Performance requirements for onshore pipeline girth welds in Australia a discussion paper, WTIA/APIA Panel 7 Research Seminar, Wollongong, Australia, October 26, 1995, Paper 8.Google Scholar
  97. [97]
    Boothby P.J.: Pipeline-Schweißen in der Gasindustrie in Großbritannien, Schweiss- und Prüftechnik 53, 1999, 12, pp. 178–181.Google Scholar
  98. [98]
    Bishop M., Hillenbrand H.G., Liessem A., Reepmeyer O., Schroeder J.: First time use of LDSAW pipes for high-pressure and high temperature transmission of steam, Europipe GmbH, Ratingen 2002.Google Scholar
  99. [99]
    Kostic M.M., Gedeon S.A., Bowker J.T., Dorling D.: Development and production of X80 (550 MPa) gas transmission linepipe, Pipeline Technology Conference, Ostende, Belgium, September 11–14, 1995, Vol. 2, pp. 399–409.Google Scholar
  100. [100]
    Line Pipe Tables, Pipeline & Gas Journal, 2003, September.Google Scholar
  101. [101]
    Voest: Linepipe plates, steel grades and dimensions, 2006.Google Scholar

Copyright information

© International Institute of Welding 2008

Authors and Affiliations

  • S. Felber
    • 1
  1. 1.Institute for Building Construction and TechnologyVienna University of TechnologyAustria

Personalised recommendations